

AnnaBot

Annotations
Assertions

Testing
Java

Ian Darwin
https://darwinsys.com/javacook/

Annotations are sticky notes

● Java Annotations are like Sticky Notes
– Attach metadata to Java source code

– Retained in compiled class file (usually)

– Mechanism for runtime discovery

– someClass.getAnnotations(), etc

● In Java language since 1.5 (2004)
● Used in Spring, Hibernate, Seam,

JavaEE(EJB/JPA),JAX-WS, etc.

@AnnotateThis

Annotations In Action

@WebService

public class Fred extends Caveman {

 @Override

 public void callHome() {

 // call Wilma here

 }

}

Run-time (JAX-WS)

Compile-time
(not saved in .class file)

@Not Without Problems

● Extra annotations are ignored!
– 100% open-ended namespace

– A framework only looks for annotations it
expects, where it expects them

– If put annotation on wrong class or method or
field, framework won't see it

– No standard tools for checking

● To a tools developer, problem == opportunity

Enter AnnaBot

● The bot that checks your annotations?
– Not smart enough to be Bot (“Marketing”)

● Basic mechanism uses meta-meta-data
– “Claim” file == Assertion about certain

Annotations and their usage

– Input = claim file(s) + target files

– Test each class in targets against each claim.

I
t
r
e
a
l
l
y
s
t
a
n
d
s
f
o
r

A
n
n
o
t
a
t
i
o
n A

s
s
e
r
t
i
o
n B

a
s
e
d

O
b
j
e
c
t
T
e
s
t
i
n
g
!

Example Error

What’s wrong with this picture?

@Entity public class Person {

 @Id int id;

 @Column(name="given_name")

 public String getFirstName() {

 return firstName;

 }

}

AnnaBot code to catch it

claim JPAEntityClaim {

if (class.annotated(Entity)) {

 atMostOne

 method.annotated(javax.persistence.*),

 field.annotated(javax.persistence.*)

 {

 error "Annotate JPA methods OR fields";

 }

}

Inside AnnaBot

● “Claim” language will be compiled into Java
bytecode using Antlr and Javassist

– Antlr grammar is done; need to write actions

● For now write Claims as Java method calls
● Main program ties it together:

– Find claim and target classes

– Run each claim against each target

“Run claim against target?”

● Uses Java Reflection API to check if method is
annotated, etc.

● “Claim” class is Composite of Operators
● “Operator” interface: process(Class)
● “tree” package classes implement Operator

– Annotated, MethodAnnotated, FieldAnnotated
● IsAnnotated method – does “real” tests

– Operators for And, Or, AtLeastOne, etc.

Look under the hood

Field[] fields = c.getDeclaredFields();

boolean fieldHasJpaAnno = false;

for (Field field : fields) {

 Annotation[] ann = field.getDeclaredAnnotations();

 for (Annotation a : ann) {

 Package pkg = a.annotationType().getPackage();

 if (pkg != null && pkg.getName().startsWith("javax.persistence")) {

 fieldHasJpaAnno = true;

 break;

 }

 }

}

Write Claims in Java

public class JPAEntityMethFieldClaim extends Claim {

 public String getDescription() {

 return "Annotate JPA methods OR fields";

 }

 public Operator[] getClassFilter() { // The “if” part

 return new Operator[] {new ClassAnnotated("javax.persistence.Entity") };

 }

// Continued...

Java Claim (continued)

 public Operator[] getOperators() {

 return new Operator[] {

 new AtMostOne(

 new FieldAnnotated("javax.persistence.*"),

 new MethodAnnotated("javax.persistence.*"))

 };

 }

}

AnnaBot Performs

● Runs on 150 classes with a dozen claims in a
few seconds

– Too slow to run on every save in IDE

– Too fast not to run it (hourly CI server)

Recent Changes

● Regex matching for names, e.g.,
MethodAnnotated(javax.persistence.*, “set.*”)

It will be even better

● “Claim Compiler” (AnnaBotC) will make it
easier to add claims

– Compile down to .class file

– Can read claims from Jars

– Will ship with jpa-claims.jar, spring-claims.jar, ...

● Claim language refinement
– Annotation Attribute Assertions

...

More Better

● Annotations can have attributes

@Column(name=”my $*!# SQL column”)

public String getDepartment() { … }
– Results may be “undefined” - invalid table name

– implementations, portability, ...

– Annotated subclasses need to do matching

Cross-class Checking is Harder

● JPA requires that Entity modifier annotations
apply to methods or fields

– This is per “project” not per class!

● Solved by letting Java-based claim classes
implement PrePostVerify interface

– Place to check flags that you set when verifying
individual classes

The Source, Of Course

● AnnaBot is open-source, BSD-licensed

git clone \
https://github.com/IanDarwin/annabot.
git

● Please contribute back:
– New claims!

– Patches to code

Takeaway - Usability

● Making a tool work may be relatively easy;
making it really usable by others is harder

● Classpath Issues require care
– Classes loaded by Reflection require all parent

classes etc, to be on classpath

– Need to hide this from user of tool

– Hindsight: use 3d-party reflection API

● Technical presentation (these slides) accepted
for presentation at 'DEFECTS 2009' workshop
at ISSTA 2009 (ACM SIGSoft / SIGPLAN yearly
conference on software testing

● Longer paper was published in Advances in
Software Engineering, online at
http://hindawi.com/journals/ase/2010/540547.html

The Technical Paper

AnnaBot

Q & A
Ian Darwin

https://annabot.org/

	Title
	Assertions
	Annotations Example
	Problems
	AnnaBot
	JPA Error
	JPAEntityClaim
	Inside
	Under the hood
	Under Hood - Reflection
	Claim In Java
	Claim in Java II
	Performance
	Recent Changes
	Plans
	Plans II
	Hard part
	UTSL
	Slide 19
	ISSTA
	Q&A

