

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 1

Java Web MVC Frameworks:
Background, Taxonomy, and Examples

M.Sc. Certificate Module

Ian F. Darwin

M Sc Candidate
Staffordshire University

https://darwinsys.com/contact?subject=jwf

Dr. Cathy French

Faculty Advisor

Abstract

: This research presents some technological background on Java-
based World Wide Web applications, develops a taxonomy of web applica-
tion development frameworks that is more fine-grained than previous dis-
cussion, offers examples of each type, and provides implementation
samples of a “hello world”-type Web Application implemented using sev-
eral of the frameworks.

Biographical Note

: Ian Darwin has worked in the area of software devel-
opment for three decades. He began working with Java prior to the first
public release and wrote one of the world’s first commercial Java developer
training programs. He is the author of the widely-used

Java Cookbook

from O’Reilly & Associates (2001, revised 2004). He is currently working
on a web-based database of MRI data for researchers at the Toronto Centre
for Phenogenomics.

Acknowledgements

: I should like to express my deep gratitude to my
Supervisor at Staffordshire University School of Computing, Dr. Cathy L.
French, for her enthusiasm and assistance.

In addition to journal resources, the web sites

http://www.husted.com

,

http://www.wafer.com

, and

Google.com

 were used in the search for open
source Java MVC Web Frameworks.

This research was not primarily supported by research funding. A lot of it
was done in my personal time; I must therefore thank my wife and children
for the time away.

Some of the evaluations, and the sample implementations using dbforms,
JCorporate Expresso and SOFIA - perhaps 15-20 per cent of the total work
described in this report - were carried out as part of work performed for the
Toronto Centre for Phenogenomics (TCP,

http://www.phenogenomics.ca/

);
the following applies to that portion of the work:

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 2

“This work is part of the Mouse Imaging Centre (MICe) at the Hospital for
Sick Children and the University of Toronto. The infrastructure has been
funded by the Canada Foundation for Innovation (CFI) and Ontario Inno-
vation Trust (OIT). The research has been funded by an Ontario Research
and Development Challenge Fund (ORDCF) grant to the Ontario Consor-
tium for Small Animal Imaging (OCSAI).”

I would like to thank everyone I worked with at TCP for being so coopera-
tive and supportive. Especial thanks to my supervisor John Cargill for
encouraging my research and for careful reading of an earlier draft of this
report.

Finally, I am grateful to the many developers whose continuing efforts to
make open source software viable made this research possible. Special
thanks to Craig McClanahan of the Apache Software Foundation for devel-
oping Struts concurrently with being the lead developer of version 4 of
Tomcat, the web server and official reference implementation for the Serv-
let and JSP Specification.

1.0 Introduction

The state of Web Application Development is undergoing constant change. Within the
sphere of Java-based web applications, there is an ongoing trend to reducing the use of raw
Java coding in “JavaServer Pages”, fostering code re-use by placing Java code in re-usable
components such as JavaBeans and Java Custom Tags. Many development frameworks -
intended to automate this or that facet of web application development - are being devel-
oped, often with duplication and overlap. There is now a peer-reviewed journal dedicated
to Web Technology Methodologies (Uden, 2002).

The research described in this paper had as its aim to catalog all Java-based Web Applica-
tion Frameworks (approximately forty have been found so far). A new taxonomy was
developed to assist in classifying the frameworks. A “sample” or “hello world” type appli-
cation was developed in representative frameworks. A Summary Catalog will be main-
tained over time on the author’s web site.

The “sample” application comprises a simple entry form - a subset of the “CRUD” (Cre-

ate, Read, Update and Delete) that is the basis of so much repetitive Web programming

1

.
The example was developed using no framework at all, using the well-known Struts and
JSF frameworks, and using half a dozen other frameworks drawn from the Catalog.

What is a “framework”? Among the many definitions I like these best: “In object-oriented
systems, a set of classes that embodies an abstract design for solutions to a number of
related problems.” (FOLDOC, 1995), and “A reusable, semi-complete application that can

1. Turau (2002) describes a framework for automating generation of CRUD forms; niggle, dbforms and
SOFIA also provide similar facilities.

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 3

be specialized to produce custom applications” (Johnson, 1998). In common usage, a
Framework is differentiated from a Toolkit in being generally more comprehensive, and
by “who calls whom”: an application generally starts off by invoking a Toolkit, whereas a
Framework generally provides the “main program” and invokes the user’s applications.
This informal definition is supported by traditional software applications such as “The X
Window System Toolkit” (MIT-XT, 1988). By this definition, the Java Applet and Servlet
mechanisms could be classified as Frameworks (although this term is not commonly
employed), while Java’s client-side User Interface package, Swing, would be a Toolkit.
This report concentrates on Frameworks used to build web applications under the Java
Servlet/JSP APIs.

Another term of relevance is that of the “hollow API”. A “hollow API” is one that provides
an interface but not a particular implementation. The best-known example is Sun’s JDBC
package (java.sql), which specifies in some detail how relational database-related objects
are to behave, but does not provide the actual behaviour. The external “JDBC Driver” for a
particular database will provide implementations of the interfaces in the JDBC package.
Other “hollow APIs” include the Java Message Service.

The effectiveness of web application development frameworks is of critical import to
those building and maintaining electronic commerce web sites, because of issues like
time-to-market, ease of updating the site, and customer perception of how well the site
meets the customer’s needs.

Creating and developing successful web applications requires a balanced partnership
between web page designers (whose job traditions arise out of Commercial Artists and
Designers), and software developers, programmers. Since very few practitioners can claim
truly to be expert in both of these areas, one of the goals of a good web application frame-
work is to allow each of these professions to operate without interfering with the good
works of the other. An important feature, then, is separating (in the case of Java web appli-
cations) the Java developer’s files from the web designer’s files, so that changes made by
one do not corrupt information provided by the other. Since JavaServer Pages (see below)
are the dominant (and officially recommended) View technology for Java Web Applica-
tions, this separation of function somewhat paradoxically requires that we “get the Java
out of the JavaServer Pages”, a theme that will be visited several times throughout this
report.

2.0 Background - Java/J2EE and Web Architecture

Java is well known as one of the leading programming languages today. The J2EE or Java
2, Enterprise Edition, is Sun’s collection of Application Programmer Interfaces (APIs) for

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 4

developing server-side applications in Java

1

. Included are most of the major server-side
APIs, including those listed in Table 1 on page 4; new ones are added periodically.

While each of these APIs has its place in developing distributed applications, this paper
focusses on web applications, especially those based on Servlets and JSPs.

See also the Sun J2EE Documentation (Sun, 2004).

2.1 HTTP, the Lorries of the Web

There are many protocols that can be used on the Internet. At the lower level is a series of
frame protocols, such as the Internet Protocol Version 4 with its transport protocols TCP
(RFC793) and UDP (RFC768), or the newer IP Version 6. Most current internet applica-
tion protocols are layered on top of IPV4 and TCP. One of the most-used of these is the
standard Web protocol, HTTP or HyperText Transport Protocol (RFC2616), originated by
Tim Berners-Lee at CERN (Berners-Lee, 2000).

HTTP is a request-response protocol; the client program (normally a web browser) sends a
request, and gets a response. The request begins with a sub-type called a “method”, like
GET (for normal links) or POST (for web forms that should not be repeated). The request
is sent in three parts:

•

A request line, itself in three parts;

•

Optional Header lines, in the same format as the familiar e-mail headers;

1. Indeed, Java’s major competitor in the enterprise software realm is Microsoft “.Net” - which bills itself as
a framework.

TABLE 1. Major J2EE APIs

Acronym Expansion Applicability

JAF Java Activation Framework Mime-type-based activation (similar to dou-
ble-clicking on a file on the client)

EJB Enterprise JavaBeans Scalable distributed business process

JDBC Unofficially Java DataBase Con-
nectivity; officially not acronym

Accessing Relational Databases

JMS Java Message Service Access to Message-Oriented Middleware
(MOM) such as IBM’s MQ Series software

JTA Java Transaction API Transactions involving JDBC and/or EJB

Mail Java Mail API Sending e-mail notifications (also provides a
client API for reading mail)

Servlets Servlets Processing for dynamic HTML

JSP JavaServer Pages Presentation for Dynamic HTML

WS Web Services Remote Procedure Call via HTTP and XML

XML Extensible Markup Language
(DOM & SAX)

Self-describing data

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 5

•

(a required null line)

•

Optionally a body (only with POST or other specialized methods).

The request line contains three space-separated fields: the method (usually GET or POST),
the resource requested (a file name, a Servlet or JSP name, a directory, etc.,), and the high-
est HTTP version number understood by the browser.

The response is in the same general format as the request:

•

A response line, itself in three parts;

•

Header lines, in the same format as the familiar e-mail headers;

•

(a required null line)

•

Usually a body (typically HTML codes to be displayed by the browser).

The response line consists of the HTTP version being used by the server, a numeric
response code, and a textual response code. The numeric codes are in five general catego-
ries:

•

100-199 Informational;

•

200-299 Success (200 is most common);

•

300-399 Redirections (used when a page is moved, and by some servers when the client
requests a directory to re-direct the browser to its index page);

•

400-499 Client Error (404 is the most famous of these);

•

500-599 Server error - something wrong with the server or a component on it

Since both the request and the response are pure text (at least where an HTML file is being
requested), it is possible to demonstrate the protocol in action using a program such as a

telnet

 client. In this exercise I request a file named

index.jsp

 from the default directory
running on the local computer; the response has been partly elided to save space.

telnet localhost http

Trying::1...

Connected to localhost.

Escape character is '^]'.

GET /index.jsp HTTP/1.0

HTTP/1.1 200 OK

Set-Cookie: JSESSIONID=DF35B53D5D1D951FA81B1216FD2F3426;
Path=/

Content-Type: text/html;charset=ISO-8859-1

Content-Length: 2539

Date: Tue, 19 Aug 2003 03:19:31 GMT

Server: Apache Coyote/1.0

Connection: close

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 6

<!DOCTYPE html PUBLIC ...>

<html>

<head>

 <title>Welcome to my computer!</title>

 <meta http-equiv="Content-Type"

content="text/html; charset=iso-8859-1" />

</head>

<body>

<h1>Welcome to my computer!</h1>

...

</body>

</html>

Note that I sent a GET request using HTTP/1.0, and the server responded in HTTP/1.1,
exemplifying the upwards-compatibility capability build into the various revisions of the
HTTP protocol.

Although the content of the response body can be in almost any format, the most common
is HTML, the HyperText Markup Language, a subset of SGML (ISO8879) based loosely
on a set of SGML tags used at CERN (Berners-Lee, 2000). The HTML and HTTP proto-
cols have grown and matured together, as mentioned in the following section.

2.2 Web Applications

A Web Application is simply a program or series of programs whose primary user inter-
face is a web browser and with which it communicates using the HTTP protocol described
above. Well-known examples of commercial web applications include the eBay auction
site, the Google and AltaVista web search engines, and the amazon.com consumer shop-
ping site. There are many thousands of lesser-known web applications in use today.

A Web Application is not to be confused with a Web Service; Web Services are inter-pro-
gram communication services rather than browser-to-server. Web Services promises to
provide the first truly pan-platform distributed computing environment; previous attempts

such as CORBA

1

 (OMG, undated) have failed due either to complexity or to a significant
vendor failing to accept the technology as a standard. Web Services are often implemented
as Web Applications, but not necessarily. Web Services are supported by the J2EE, by
Microsoft .Net, and by other languages as well (e.g., Perl’s SOAP::Lite module).

1. CORBA, the Object Management Group’s Common Object Request Broker Architecture, a platform-
neutral, language-neutral Remote Procedure Call mechanism, implemented for Java, C++ and a dozen
other languages. It ultimately failed in the market because of complexity and because Microsoft refused
to sanction it.

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 7

The Web protocol was originally designed primarily as a user-friendly replacement for the
FTP protocol (Berners-Lee, 2000). As such, HTTP had no requirement for interactivity or
“web applications”. Capabilities have been added in subsequent versions of HTTP and
HTML. Version 2 of HTML RFC1866) added the

<form>

 tag and a variety of input field
types; at the same time, the NCSA Web Server (NCSA, 1995) was extended with a mech-
anism called “CGI”, the Common Gateway Interface (NCSA, 1995). CGI allows almost
any general-purpose programming or scripting language to be used as a back-end to the
web server. CGI provides a common format for passing request parameters and sending a
response. Here, for example, is a UNIX shell script which the author previously used to
provide a “Contact form” facility (it has since been replaced, of course, by a Java servlet).
Though this example is trivial, it has within it the two actions which make up the core of
all web applications:

process the input data

 in some way, and

generate an HTML response

to the user.

#!/bin/sh

DEST=contact@mycompany.com # where to send the mail

Part One: send the message to the system contact person

(

echo "Environment:"

echo "REMOTE_ADDR=${REMOTE_ADDR}"

echo "HTTP_REFERER=${HTTP_REFERER}"

echo "HTTP_USER_AGENT=${HTTP_USER_AGENT}"

echo ""

echo "HTTP Body:"

tr '&' '\n' | fmt

) | Mail -s "darwinsys contact form" ${DEST}

Part Two: generate an HTML response to client’s browser

echo "Content-type: text/html"

echo ""

echo "<html><head><title>Thanks</title></head>

echo “<body>"

echo "<H1>Thank you...</H1>"

echo "<p>Thanks for the input.

We will try get back to you shortly!"

echo "</p></body></html>"

The first part saves some “evidence” such as the Remote IP address, along with the content
of the message being sent from the browser, via the Unix

mail

 command, to a given con-
tact person. In a realistic application, this part might represent, e.g., the order processing.

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 8

The second part uses the UNIX

echo

 command to generate an HTML response. The stan-
dard output of the CGI script is connected (by the web server; the Web Application doesn’t
have to be concerned with this detail) to the network socket that leads back to the browser,
thus the echo output (from

<html>

 to

</html>

) is delivered back to the user’s browser
and is formatted to control what the user sees.

The simplest web applications consisted of only a single interaction: the client filled in a
simple form and clicked the Submit button, and got the results. HTTP is intrinsically a
“stateless” protocol: after one request-response cycle (see “HTTP, the Lorries of the Web”
on page 4), the connection between client and server is torn down. To extend the reach of
web functionality,

session management

was added to HTTP to track multiple request-
response interactions between a given browser instance (hence, presumably, a given per-
son) and a given server.

Although CGI has been all but abandoned for e-commerce sites due to the overhead of
running a separate system-level process to handle each user request, it remains in use on
personal and hobbyist sites. As well, CGI has been formative on all subsequent software
used for developing web applications, including commercial offerings from Netscape
(NSAPI) and Microsoft (ISAPI), and of course Servlets and JavaServer Pages.

2.3 The Servlet API

A servlet is a small segment of Java code run in a “servlet container”. I shall somewhat cir-
cularly define a “servlet container” as “that part of the web server that processes servlets
and JSPs.” Servlets and their close kin JavaServer Pages take the place of CGIs in the Java
2 Enterprise Edition. Because invoking a method on a servlet that is already in memory is
very much faster than invoking an external system-level process, and because Java servlets
normally run “multi-threaded” (Sun Tutorial, 1995), servlets tend to be substantially faster
than CGI-based processing.

In this section I discuss the API used in normal Servlet and JSP development, with some
discussion of the operations of the “servlet container”. The Java Servlet API has been rela-
tively stable for several years, and the specification is currently at Version 2.3. This speci-
fication is developed by the Java Community Process (jcp.org), is shepherded by Sun
Microsystems (

http://www.sun.com/

; Sun owns the Java trademark and provides the JCP
project management), and the reference implementation is provided by the Apache Soft-
ware Foundation’s Jakarta Project, Tomcat group. The Servlet API provides, in package

javax.servlet

, a generic outline for Internet-based interactions between a client and
a server (See Figure 1 on page 9). There can be Servlets for various protocols such as FTP,
but the most interesting ones are for HTTP and, indeed, there is an entire sub-package in
this API for such things, the package

javax.servlet.http

. While the original Serv-
let mechanism defined a method

service(ServletRequest, ServletRe-
sponse)

 as the primary entry point to be called once for each user request, the HTTP
servlet overloads this as

service(HttpServletRequest, HttpServletRe-
sponse)

, but also defines a series of methods such as

doGet(HttpServletRe-
quest, HttpServletResponse)

 - there is one method here for each HTTP
method (see “HTTP, the Lorries of the Web” on page 4). In normal use, an HTTP servlet

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 9

writer will only implement

doGet()

 or

doPost()

 (or possibly both), leaving the
higher-level HTTP servlet to sort out which HTTP method was used and therefore which
HTTPServlet method should be invoked.

FIGURE 1. Servlet Class Hierarchy

Figure 2 on page 9 shows the interaction between the client browser and the server; the
Servlet Container accumulates the state of the input request in an

HttpServletRe-
quest

 object and information on the return path to the browser in an

HttpServlet-
Response

 object. Note in passing that the

HttpServletRequest

 has methods
directly analogous to the CGI variables discussed in “Web Applications” on page 6, such
as

getRemoteAddr()

, and methods which access these values, such as

getH-
eader(“Referer”)

 and

getHeader(“User-agent”)

.

After creating the

HttpServletRequest

 and

HttpServletResponse

, the servlet
container then sends these to the

service()

 method of the Servlet corresponding to the
URL.

FIGURE 2. Browser-Server-Servlet Interaction

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 10

Servlet is an interface in package java.servlet, and GenericServlet is an abstract class
which implements it. Servlet’s most important method is service(), called with two argu-
ments, a ServletRequest and a ServletResponse. The former represents the entire state of
the inputs, such as the full URL, the request parameters, the remote IP address, and more.
The ServletResponse contains all the state needed to generate a valid response and have it
sent back to the user, including setting headers and providing a binary or text file handle
for writing the response data. There are also init() and destroy() methods, for ini-
tialization and finalization respectively.

In the package javax.servlet.http, the class HttpServlet extends Servlet, and HttpServle-
tRequest and HttpServletResponse extend Request and Response respectively. HttpServlet
is the most important class for us; almost all Java web servlets, and the Servlets in the
frameworks discussed here, extend this HttpServlet. There is, for example, a JSP servlet in
most servlet containers which will subclass HttpServlet and add the functionality of com-
piling and invoking JavaServer pages. If a Servlet container is also a Web Server, as most
are, it will also provide an HtmlServlet or WebPageServlet which simply outputs static
HTML pages upon request.

In the HttpServlet class, the service method is specialized to look at the HTTP request
method and farm it out to doGet(), doPost(), doPut(), etc., as appropriate. A minimal
HTTP servlet is shown in Figure 3 on page 10.

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloServletMinimal extends HttpServlet{

public void doGet(HttpServletRequest request,

HttpServletResponse response) throws IOException {

PrintWriter out = response.getWriter();

response.setContentType(“text/html”);

out.println(“<h1>Hello from a Servlet</h1>”);

out.println(“<p>Server time is now “);

out.println(new Date());

}

}

FIGURE 3. HelloServletMinimal.java

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 11

2.4 The JSP API

A JavaServer Page is an HTML (or XML1) text file that can contain a variety of Java con-
structs, including executable code, declarations, and printable expressions. One way of
understanding a JSP is that it is “a servlet turned inside-out”: a self-contained servlet will
contain executable Java code, and the HTML output will be embedded in calls to
out.println. A JSP, conversely, contains ordinary HTML, and any Java statements it needs
will be embedded in special tags. Indeed, JSPs began as a more convenient means of writ-
ing Servlets. The HelloServletMinimal shown above can be rewritten in as little as the fol-
lowing hellominimal.jsp:

<h1>Hello from a Servlet</h1>

<p>Server time is now <% new java.util.Date() %>

The standard JSP mechanism is based on HTTP Servlets as described above. The JSP
source file is stored in the normal web server hierarchy, along with static HTML pages,
images, and other resources. When a URL validly referring to a JSP file is first encoun-
tered, the file is converted into a Java servlet extending HttpJspBase, using the obvious
(and some not-so-obvious) transformations, such as surrounding text with quotes and
embedding in an out.printnln() call, and embedding expressions (such as new
java.util.Date()) in calls on out.println(). The resulting Java file is then
compiled into a Java bytecode class file. The resulting servlet is from this point on largely
indistinguishable from an HTTP servlet written by a developer.

The executable code of the JSP-based servlet runs in the _jspService() method,
which is of course called from the service() method of the Servlet, and called with the
same two arguments, an HttpServletRequest and an HttpServletResponse.
The JSP page developer has these, and several other built-in server objects, such as the
PrintWriter “out”, the ServletContext, PageContext, and Session
objects.

The developer may thus be tempted to write a lot of Java code into JSPs, but this is dis-
couraged. Indeed, one of the minor themes of this paper, like the focus of evolving roles in
JSP development, is “getting the Java out of the JavaServer Pages”. Doing so is intended
both to make the JSP more readable and to promote code re-use by moving Java code into
components (JavaBeans), JSP Custom Tags, and model-view-controller frameworks.

2.4.1 Getting the Java Out I: JavaBeans

JavaBeans were first promulgated as a client-side API; they were historically intended to
allow Java tools builders to create Rapid Application Development tools (the “drag and
drop” part of an Integrated Development Environment), such that Java tools would
become directly competitive with Microsoft’s Visual Basic. While this goal has been
achieved technically, it has not had the market acceptance that Sun had hoped - many peo-

1. Actually almost any text-based format can be used, including Microsoft RTF, Adobe Framemaker MML,
and others.

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 12

ple still think first of using Microsoft Visual Basic for simple desktop applications. How-
ever, the JavaBeans pattern has turned out to be much more widely useful than first
anticipated; this has led to their acceptance in diverse environments, including use as data
model components in JavaServer pages.

JavaBeans are just classes that follow a few simple conventions:

• provide a no-argument constructor;

• implement the (empty) java.io.Serializable interface, and

• follow the standard setter/getter pattern for property accessors.

In the JavaServer Pages API, there are convenient methods for e.g., passing all the HTML
forms parameter from the input request into a JavaBean instance: the JSP need only con-
tain

<jsp:useBean id=”myBean” class=”com.darwinsys.Person”/>

<jsp:setProperty name=”myBean” property=”*”/>

to instantiate a Person object, storing a reference to it in a page-specific container object
called the PageContext, and populate it with all HTML forms parameters whose name
matches a setter method in the MyBean class. For example, if the HTML form contains
Your Name: <input type=”text” name=”name”> and the MyBean class has
a setter method public void setName(String); then the jsp:setProperty
call will cause the JSP mechanism to automatically call this method with the value the
user type in the name field. But it will also handle setAddress(), setCity(), setHome-
Phone(), and so on, again assuming that the HTML form names match the Bean property
names. It will even do certain type conversions automatically; if there is a text field named
age and a setAge(int) method, the JSP mechanism will convert the string returned from the
HTML parameter into an integer and then call setAge(). This works for all standard types
(the eight built-in types and their wrapper classes).

JavaBeans are a good tool for separating out Java code, and they promote code re-use by
packaging Java code into self-contained components. But they don’t go far enough. It is
still often necessary to invoke a Java Scriptlet (raw Java code) to invoke methods that do
not fit the set/get pattern. Handling a collection (array or List) of Bean objects, for exam-
ple, requires a Scriptlet containing a Java for loop. To go further in simplifying things,
we have to resort to a mechanism that is more tightly integrated with the JSP processor.

2.4.2 Getting the Java Out II: JSP Custom Tags

JSP Custom Tags were introduced with the JSP 1.1 API specification, and allow the devel-
oper to write a small module which interacts with the JSP mechanism in clearly defined
ways. The JSP then need contain only a reference to the tag. No Java scriptlet code is
needed, even for a Collection. Consider the hypothetical ForEachUser iterator tag, for

example:1

<myco:ForEachUser user=”u”>

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 13

Name: <jsp:getProperty name=”u” property=”fullName”>

</myco:ForEachUser>

which might print a list of user names such as:

Name: Ian Darwin

Name: Donald Duck

Name: Albert Einstein

Name: Henry Ford

All the code related to locating the user data, and storing it in the PageContext, is hid-
den in the class that implements the ForEachUser tag; typically no Java code at all is
needed in the JSP that uses Custom Tags. As concrete example, I converted a JSP for dis-
playing a list of club members from Scriptlet code to use JSP Tags provided by the Struts
framework (see “Struts” on page 24). The iteration code changed from this:

<% for (int i = 0; i < list.size(); i++) {

 out.println(i%2==0 ? "<tr>" : "<tr bgcolor='#ddd'>");

 String TD = "<td>", STD = "</td>";

 // For browsers that don't believe a cell is a cell
 // unless it has something in it...

 String NBSP = " ";

 Member m = (Member)list.get(i);

 String email = m.getEmail();

 if (!("".equals(email))) {

 email = "" +

 email + "";

 }

 out.println(

 TD + m.getName() +

 TD + email + NBSP +

 TD + m.getBusPhone() + NBSP +

 TD + m.getHomePhone() + NBSP +

 TD + m.getCellPhone() + NBSP +

 TD + m.getFaxNumber() + NBSP +

 "</tr>");

 }

 %>

to this:

<logic:iterate name="listaction.results" id="m" indexId="i">

1. I omit here the <%@taglib directive and the corresponding TLD file, both of which would be needed in a
complete example; such matters may be gleaned from the formal J2EE documentation.

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 14

<% out.println(i.intValue()%2==0 ? "<tr>" :

 "<tr bgcolor='#ddd'>");

 %>

 <td><bean:write name="m" property="name"/></td>

 <td><logic:notEmpty name="m" property="email">

 <a href='mailto:<jsp:getProperty

 name="m" property="email"/>'>

 <jsp:getProperty name="m" property="email"/>

 </logic:notEmpty>

 </td>

 <td><bean:write name="m" property="busPhone"/>

 <td><bean:write name="m" property="homePhone"/>

 <td><bean:write name="m" property="cellPhone"/>

 <td><bean:write name="m" property="faxNumber"/>

 </tr>

 </logic:iterate>

And all Java code was eliminated from the page except for the single conditional state-
ment (i%2==0) used to print alternating table rows with a shaded background; I consider
this an acceptable compromise.

The current JSP standard, 1.3, includes the Java Standard Template Library. JSTL pro-
vides many powerful features such as direct access to SQL databases, iterations, logic, and
others that can be useful in writing sophisticated scripts in a JSP without resorting to
actual Java coding.

2.5 The Trouble With JSPs

Despite the clear benefits of JavaBeans and JSP Custom Tags, there is nothing to prevent a
developer from using arbitrary amounts of Java code directly in the JSP. This Java would
be inscrutable to, and possibly subject to accidental (or even malicious) modification by
the Web Page Designer working on the file. This is the main objection to the entire JSP
mechanism raised by Jason Hunter (Hunter, 2000). In order to ensure maintainability, it is
desirable to impose one or more Design Patterns, such as the Model-View-Controller pat-
tern.

Design Patterns (GOF, 1995) are recurring patterns in development. “A design pattern sys-
tematically names, motivates and explains a general design that addresses a recurring
design problem in object oriented systems. It describes the problem, the solution, when to
apply the solution, and its consequences. It also gives implementation hints and examples.
The solution is a general arrangement of objects and classes that solve[s] the problem. The
solution is customized and implemented to solve the problem in a particular context.”
(GOF, 1995, p. 360). In other words, using Design Patterns gives developers and managers
a common language for describing how to implement a given section of code, and pro-

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 15

vides the developers with proven, pre-fabricated implementations. It’s a little bit like
building an electronic gadget by choosing parts from a catalog of integrated circuits rather
than soldering transistors and diodes together individually; developers who don’t use
Design Patterns tend to “reinvent the flat tyre” rather than using proven solutions. For
example, the Factory pattern (used throughout the standard Java API) is used when a
method creates instances of a class that are tailored for the user (in Java, consider all the
static methods called getInstance() - they are Factory methods). The developers of the
early Java API and the GOF authors did not, as far as I can tell, directly borrow from each
other; the notion of Design Patterns was “in the air” in computing research in the early
1990’s (GOF, 1995, p. 356-7). Of the twenty or so patterns in the book, the one that most
interests us is the Model-View-Controller pattern (which the GOF call Observer).

2.5.1 The Model-View-Controller Design Pattern

There are several methods of building Java-powered web applications. The best one seems
to be a scheme adapted from the client-side Model-View-Controller or MVC design pat-
tern (Burbeck, 1987). MVC originated to allow a client-side GUI application to be devel-
oped in a maintainable way giving heed to the need for multiple displays of common data.

In Smalltalk-80, the world’s second significant Object-Oriented language1, the names
View and Controller referred to actual classes that a developer would directly extend,
while the Model could be anything from a String class object (for a simple text editor) up
to a complex data structure.

MVC is a pervasive idea; indeed, the modern application convention of having a View
menu derives directly from the notion of object-oriented software having multiple Views
of a model (Hiltzik, 2000) For example, a Spreadsheet might have both a table view and a
chart view on-screen side by side. A Presentation program might have both a text view and
a slide sorter view showing concurrently. It is obviously not desirable for the user to have
to click a menu item such as View->Refresh in order to have changes he has entered in
one view be displayed correctly in the other. The MVC pattern, also known as the
Observer pattern (GOF, 1995, p. 293), divides the code into three clearly-defined sections:

• The Model represents the data being modelled; the text of a word processor or slide
show; the data in a spreadsheet.

• The View represents the visible display.

• The Controller is the code that responds to user input; there might be a Mouse control-
ler, a Keyboard controller and a Menu Controller in a typical application. In a Java GUI
implementation, these might be a series of Inner Classes delegating to a back-end, or
they might be implemented as a single class that implements the appropriate Listener
interfaces.

These three parts must be kept synchronized, of course. The Model must notify all regis-
tered Views whenever its data changes. The Controller must notify the Model when the
user makes a request that involves changes to the data. The View must request current data

1. Simula-67 was the first.

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 16

from the Model when notified that the model has changed. The user, seeing the updated
view, will make more changes, and so back to the Controller. This is summarized in
Figure 4 on page 16.

FIGURE 4. Model-View-Controller Pattern

I have written (Darwin, 1999) about the implementation of MVC in a Java GUI applica-
tion. In the Java context, the Controllers are most often constructed as classes that imple-
ment sub-interfaces of the java.util.EventListener Interface. A well-known
client-side example is java.awt.event.ActionListener, used as a Controller to
handle user actions in buttons, menu items, text fields and other action-based components.
The Controller registers (or is registered by the main part of the application) with the event
source (e.g, the JButton) by calling the latter’s addActionListener method. Using
anonymous inner classes, the code for this might be:

JButton applyButton = new JButton(“Apply”);

applyButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {

model.applyChanges();

}

});

While this might seem to have extra overhead compared to commingling the action han-
dling code along with the data handling code, in a large application the benefits outweigh
the slight increase in code. This is all the more so when there are, or might be, more than
one View at work. There is a significant increase in maintainability when the views are iso-
lated from each other; each is simpler to implement on its own, and there are fewer “hid-
den interactions” among the different parts of the code. If MVC is not used, the code for
implementing multiple views over a single model quickly becomes an unmaintainable tan-
gle of special cases and complex logic.

For these reasons, over time, MVC has become the definitive way of building large client-
side GUI-based applications.

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 17

2.5.2 MVC on the Web?

How can the MVC pattern be applied on the web, where there is no direct coupling
between the user and the server? Doing so should be expected to yield the same sort of
benefits as on a client side: greater separation among different parts of the application,
greater code re-use, etc. Typically the intent is that the View will be represented by an
HTML page, generated by a View component such as a JSP. The Controller will be a Serv-
let that responds to user requests and forwards them to a Model component. The Model
may be stored in JavaBeans or EJBs or any similar data object. Some of the frameworks
discussed in the next section provide special intermediaries, e.g. Struts’ “Action” classes,
to be called from the Controller Servlet, do some processing, and pass control either to
another Action or to a final View component (e.g., JSP). Thus the MVC pattern is simu-
lated: the HTTP request invokes the Servlet Controller, the Actions update the Model, and
the JSP causes a new View to be displayed in the user’s browser. As will be seen in the
next section, some Frameworks go further, and attempt to carry over the client-side Layout
and Event Listener patterns from client-side GUI development into the realm of Web
Application development. Leff (2001) describes a framework for building MVC web
applications as a single running application and then partitioning them, offering more flex-
ibility than dividing into Model, View and Controller from inception. Seshadri (1999)
offers an early presentation on MVC on the web; the term “Model 2” stems from the
description of Web-based MVC in Sun documentation preceding Seshadri’s article.

2.5.3 Other Relevant Design Patterns

Other Design Patterns figure prominently in web applications.

Facade (GOF 1995) is a general term for the use of one object as a front-end for one or
more others.

Data Access Object or DAO (Alur 2001) is the use of a Facade for data access. Rather than
having the main application code be concerned with the details of the JDBC API (see
Figure 1, “Major J2EE APIs,” on page 4), a DAO is constructed which provides methods
for fetching application-specific objects that represent rows in the database or other persis-
tent entities. Done properly, this completely isolates the application from knowledge of the
underlying persistence structure, making it easier to change either the application or the
persistence without affecting the other. A DAO is used in the demonstration application in
Section 4.3, “Servlet and JSP (MVC, not using a Framework),” on page 39).

A Singleton (GOF 1995) is a class of which at most one single instance may be present in
a given application (more precisely in Java terms, a given “ClassLoader context”; unre-
lated Web Applications might unknowingly each instantiate their own instances of the
same Singleton class). Java’s Preferences (java.util.prefs.Preferences, new
in JDK1.4) is a Singleton to provide centralized access to storing and retrieving users’
preferences from multiple points within an application. The Singleton pattern is very easy
to implement in Java:

public class SingletonDemo {

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 18

 private static SingletonDemo singleton;

 /** Prevents any other class from instantiating us. */

 private SingletonDemo() {

 }

 /** A static 'factory' method */

 public static SingletonDemo getInstance() {

 if (singleton == null)

 singleton = new SingletonDemo();

 return singleton;

 }

 // methods protected by singleton-ness here...

}

The application using this does not call the constructor, but instead calls Singleton-
Demo.getInstance(). Indeed, applications are unable to instantiate the class directly
due to the only constructor being private; the only construction of this class that can possi-
bly occur is in the first statement of getInstance(). An alternate implementation is to
instantiate the Singleton in a static code block. In a full example, the constructor might
check that it has only been called once (e.g., by testing that the variable singleton is
still null) and throw an exception if not; the online source version of oo/Singleton
does this, and features a JUnit (JUnit 2001) test case for ensuring that it works correctly.

Front Controller (Alur 2001) is the use of a Facade for dispatching from a Singleton object
to the appropriate one of a list of other objects. Many of the MVC frameworks use a Front
Controller, e.g. Struts’ “Controller Servlet”, to receive all user requests and dispatch them
to the appropriate action handler.

Inversion of Control (IoC), also called Dependency Injection (Fowler, 2004) attempts to
de-couple the various parts of an application, in our case the Model, View and Controller.
Instead of having, say, the View code explicitly register itself with the View, an IoC frame-
work allows the application to specify that a Model can accept one or more View registra-
tions; these are declared as Java interfaces. Two leading IoC frameworks are
PicoContainer (http://www.picocontainer.org/) which is not web-specific, and Spring
(http://www.springframework.org/) which aims to be a “lightweight J2EE framework”
(see “Spring Framework” on page 37).

3.0 The Research: Java MVC Web Frameworks Catalog

3.0.1 Brief Taxonomy of Web Frameworks

In researching web frameworks, I have found approximately 40 software projects that
claim to simplify web development and implement the MVC design pattern. In attempting

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 19

to compare them, I found comparisons among some frameworks impossible due to radi-
cally different feature sets, so I came to realize that our current nomenclature- considering
them all to be “MVC frameworks” - was inadequate. Starting with the observation that
Struts, the best-known “MVC framework”, actually does not implement any of the Model
code for you, was the starting point for developing a new taxonomy, more fine-grained
than simply calling them all “MVC frameworks”. I now believe that all such frameworks
can be categorized into one of these major categories:

1. Template Engines (Velocity, Web Macro) - these provide content substitution within
pre-defined “templates”, operating primarily at the View layer level;

2. Template-agnostic Frameworks - frameworks which provide some MVC functionality
themselves, but allow use of one or more of the Template engines instead of or in addi-
tion to JavaServer Pages for the view components;

3. OO Frameworks - certainly most Java programs are Object-oriented; OO Frameworks
in this context go further and use component-based development for “GUI” layout of
the resultant web pages, or for “Listener”-style event modelling, or both.

Most OO frameworks are also full MVC frameworks, with the prominent exception of
Java Server Faces (JSF). I did not wish to complicate the taxonomy by further subdivid-
ing based on this one case.

The frameworks are discussed under these headings in the following sections; an alphabet-
ical list of all known frameworks appears at the very end of this document.

3.0.2 Observation: You Cannot Escape Programming

Templates do attempt to separate programming from display, however, in general the view
must have some programming in it, even if not in Java. Consider the problem of displaying
a “simple” table, such as a “sign-up” page for assignments at a meeting. Assume the User

TABLE 2. Taxonomy of Frameworks

Short form. See Description Examples and notes

M N/A Model(data) only OR layers: JDO, Castor, Hibernate, OHB,
Entity EJB, etc. Not detailed in this
report.

V Section 3.2 View layers (template
engines)

WebMacro,Velocity. Note 1.

C Section 3.3 Controller only; rely on JSP
or a V framework

ActionServlet, Weaver. Note 2.

VC Section 3.4 View-Controller Frame-
works

A front controller and a View layer. Tea
Servlet; Struts

MC Section 3.5 Model & Controller only Niggle, dbforms. Note 2.

MVC Section 3.6 Full frameworks Turbine, Expresso

MVCO Section 3.7 Full framework + OO
(HTML Components)

SOFIA, JSF, webonswing. Note 3.

Meta Section 3.8 Full MVC or MVCO +
more

Spring, Keel

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 20

Requirements for this page to be something akin to the following (taken from a real exam-
ple for one of my consulting clients):

To print e.g., the role of meeting Chairperson:

• If the role of Chairperson for Tuesday’s meeting is assigned to Robin, then print
Robin’s name;

• Else if the user logged in to the web site is in charge of meeting assignments for this
particular meeting, then display the list of persons eligible to take on this role;

• Else if the user is logged in as a “member”, display a “Sign up” button;

• Failing all of the above (i.e, a guest user), just print the word “Unassigned”.

Repeat the above algorithm for each meeting role.

The only reasonable way to express all of that is in traditional if-else logic, so any really
capable View layer that abolishes Java must reinvent at least a goodly part of it.

3.1 M-type (Model-only) Toolkits

Other than low-level coding of JDBC and SQL statements, how do web application frame-
works store or persist their data into permanent storage? Frameworks that do not provide
their own Model layer tend to utilize one of the following data access technologies or tool-
kits. Some of these are “O/R Mapping” (Object-Relational Mapping) in that they provide
a (bidirectional) mapping between Objects and a Relational Database.

• JavaBeans - also known as POJOs (Plain Old Java Objects), these simply store proper-
ties with paired set/get methods. No data access in their own right, but often used to
transfer or transport data into one of the other layers.

• JDO and Hibernate are OR mapping projects similar in their general approach. They
provide POJO-like semantics with DAO functionality. I have described and given
examples of JDO in (Darwin, 2004) and Hibernate in (Darwin, 2004a) JDO is a “hol-
low API” for which multiple implementations are available; Hibernate is both a specifi-
cation and the only implementation of that specification. JDO resources can be found at
http://www.jdocentral.com/, while Hibernate can be found at http://www.hibernate.org/.

• OJB (Object-Java Bridge) from the Apache Foundation provides two OR-mapping
APIs, one for JDO and one that is compliant with the Object Management Group spec-
ification.

• Castor is yet another OR-mapping, and can be found at http://www.castor.org/.

• Entity EJB is part of the J2EE framework (see “J2EE” in Section 2.0).

These are not discussed at length in this report.

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 21

3.2 V (View) Frameworks - Template Engines

Template Engines to not necessarily implement a full Model-View-Controller pattern.
They tend to implement primarily the View portion, leaving the Model and Controller to
others. For standalone use as Web applications, however, they must provide - or the devel-
oper using them must provide - at least a Servlet. As Freemarker says of itself (on http://
freemarker.sourceforge.net/ as of the time of writing): “FreeMarker is not a Web applica-
tion framework. It is suitable for [use as] a component in a Web application framework...”.

Like JSPs, most of the Template engines are not restricted to HTML but can output XML,
RTF, and other textual formats.

3.2.1 WebMacro

Among the oldest of the Java Servlet macro languages is WebMacro, a simple scripting
language. The developer writes a Java class extending WMServlet, and the web designer
writes a Template file. The servlet creates a Context object (part of the WebMacro API, not
the Servlet/JSP API) which contains “variables” (Java objects). The template refers to
these using the dollar sign to denote a variable and the C/C++/Java “dot” notation for
attributes within a variable. The template might, for example, refer to

$club.member.name

which refers to “name” in attribute “member” in variable “club”. Despite claiming to
avoid programming in the View layer, it seems inescapable, and WebMacro provides a
large collection of syntax. See http://www.webmacro.org/WMScriptDirectives and http://
www.webmacro.org/WMScriptOperators for a summary of the “Directives” - commands
like “if” and “foreach” - and “Operators” - many of them identical to their Java counter-
parts.

WebMacro has been used in a number of web site projects, can be used with the Jakarta
Turbine project, and has been interfaced to Jakarta Struts. Its flagship user is the AltaVista
search engine (http://www.altavista.com), long one of the top-ten sites on the Internet

3.2.2 FreeMarker

FreeMarker is similar to WebMacro. It is less widely known and used, but this may change
as it is the default View layer for Niggle (see “Niggle” on page 28).

An important difference is that WebMacro allows any Java object to be put out for display
on the page, whilst FreeMarker requires that the objects being “exposed” for display
implement one of several interfaces that are part of FreeMarker; this provides a level of
type-safeness that makes it more likely that objects will display correctly, when contrasted
with the default use of the Java language toString() method in WebMacro.

FreeMarker has its own simple programming language (see “Observation: You Cannot
Escape Programming” on page 19). The construct ‘<#’ is used to introduce a program-
ming command. A simple page to display a bean (both via “toString” and by iterating over

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 22

a property named “array” in the bean) previously set in the Servlet PageContext by a serv-
let might look something like the following:

 <fm:template>

 <#assign mybean = page.mybean>

 <p>Here is the bean: ${mybean.string}

 <#list mybean.array as item>

 ${item}

 </#list>

 </fm:template>

3.2.3 Velocity

A moderately well-known view layer, Velocity has the imprimatur of the Apache Jakarta
project. Velocity is a small, simple view layer that has no strong dependencies on the Serv-
let/JSP mechanism - it can be used quite outside of web applications. However it is best
known as a template engine for providing a view of Servlet output. Whether used as an
Application or as a Servlet view, the general operation is that the Java code places one or
more objects into a Velocity Context, and a “template” file contains references to its name
(preceded by a dollar sign), resulting in merge substitution in the output. A VelocityCon-
text behaves like a java.util.Dictionary, with put(name, value) and get(name) methods.
Typically the former are invoked by the Java code and that latter invoked implicitly by the
template.

Velocity also provides a simple programming language (see “Observation: You Cannot
Escape Programming” on page 19). Velocity uses commands beginning with “#” in an
attempt to avoid conflicts with e.g., Java code in a JSP scriptlet.

Assuming that a previous Login Servlet invocation might have set the value of “loggedi-
nusername” in the Velocity context, a Velocity Template for a “welcome page” might look
like the following:

#if $(loggedinusername)

<p>Welcome back, $(loggedinusername)</p>

#else

<p>I see you are not logged in. Won’t you please be nice

and either login or

register?

#end

Velocity is not a full MVC framework, but it is used as the View portion of some full
frameworks, such as Turbine (see “Turbine” on page 29).

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 23

3.3 C (Controller-only) Frameworks

3.3.1 ActionServlet

ActionServlet is a small Front Controller servlet that forwards to Java components; in this
sense it is similar to Struts. It differs in being able to forward to a variety of different types
of components; the actions “POJOs” (“Plain Old Java Objects”, that is, they are not
required to extend a given type nor expose any given method).The class and method to
invoke for each web page are specified in an XML configuration file, as are the pages to
display on success and on any of a list of Exception types. ActionServlet does not provide
JSP custom tags and, indeed, does not recommend use of JSPs, favoring use of either
WebMacro or Velocity. It is a small, reasonably easy-to-learn package and is accompanied
by adequate documentation and a dozen or so examples of usage.

Like many of the other frameworks, an ActionServlet template uses # for programming, $
for retrieving fields from objects.

See also http://www.actionframework.org/.

3.3.2 Weaver

Weave is another small Front Controller; it works with JSP, including use of the JSP2
Expression Language and JSTL tags. Weaver pages are written in pure XML, which maps
to HTML tags and JSP tags. Or, as the web site puts it, Weaver “exploits your existing
knowledge of the JSP Expression Language (EL) and of JSTL via a consistent XML tag
set.”

Weaver provides no model of its own, but a simple Java interface is used to hook any
Model functionality that you like into Weaver.

JSP is the default View layer, but others may be substituted.

See also: http://www.oldlight.com/weaver/.

3.4 VC (View-Controller) Frameworks

3.4.1 Tea Servlet

Another interesting template environment is the Tea Servlet, originated by Walt Disney
Internet Group (http://www.dig.com). Unlike the simpler template frameworks, Tea is
comprised of the Tea language (including a bytecode compiler) used for writing Tea Tem-
plates, the Tea servlet itself, and Kettle, an IDE for generating Templates.

The Tea language is small, simple, and typesafe. In the name of enforcing the separation
of View and Processing, it does not allow any direct access to Java APIs, including the
Servlet API. Tea compiles simple expressions into Java bytecode.

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 24

Each page must have two classes written for it, an Application class and a Context class.
The Application class is mostly boilerplate but includes the init and destroy func-
tionality of Servlets. The Context class is not, as the name suggests, the page’s interface to
the Servlet Context, but is instead the page’s interface to the Request object.

The developer will write in the Context class code for the most trivial methods, e.g., what
most Servlets/JSPs would write as request.getParameter(“name”) becomes getName() in
the Template, but then must be written as something like

getName() { return request.getParamer(“name”); }

in the Context class. I would suggest that this process could be automated using introspec-
tion on the request object, similar to the DynaActionForm feature of Struts, which avoids
the need to write simple data classes.

Overall, the Tea Servlet provides very complete separation of view templates from Java.
The Tea language doesn’t allow access to Java, only to functions provided in the runtime
or functions provided by the developer. This means that the template designer (‘web
designer”) has no access at all to Java, and cannot mess things up for you.

Another nice aspect is the administrative servlet, which provides the ability to reload the
Tea servlet configuration files, without unduly perturbing the surrounding Servlet Engine
or Web Server.

3.4.2 Struts

Struts is one of the best known Java Web Application frameworks at this time; a quick look
on Amazon.com revealed a dozen textbooks with Struts in the title. Struts focusses most of
its effort on the Controller portion of the MVC triad; the View is usually JSP although
Velocity may be substituted, and the developer provides the Model using any M-type tech-
nology that is appropriate. Struts excels at making the Controller simple to use and very
maintainable. Bishop et al. (2002) discuss an advanced application build upon Struts.

For each web form or other action, the user provides an Action class, and lists the action in
the struts-config.xml file. This configuration file is the organizational centre of a Struts
application, as it specifies the mappings among URL paths, Data Holders, Action classes,
and display pages. The configuration file is read by the Struts ActionServlet, a singular
class which acts as a Facade (GOF 1995, p 185) or Front Controller (Alur 2001) to all the
Action classes, using information in the configuration to map URLs to the correct Action.

The Data Holder classes or Form Beans are, like JavaBeans when these are used with a
<jsp:useBean...><jsp:setProperty property=”*”...>, intended to accumulate the HTML
forms parameters. These could be considered part of the Model, but Struts experts tend to
consider them as temporary holder classes for the benefit of the Controller. They must sub-
class the base class ActionForm, so “ordinary” JavaBeans are not eligible. The key point is
that one can write a Java class to serve as an ActionForm but, often, one does not have to.
The DynaActionForm class can be created just by specifying the forms parameters as

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 25

Form Bean fields in XML, as in this extract from the Struts Implementation in my Cata-
log.

<struts-config>

<form-beans>

 <!-- Used in the Demo, for inserting a Person -->

 <form-bean name="addPersonDynaForm"

 type="org.apache.struts.action.DynaActionForm">

 <form-property name="firstName" type="java.lang.String"/>

 <form-property name="lastName" type="java.lang.String"/>

 <form-property name="address1" type="java.lang.String"/>

 <form-property name="address2" type="java.lang.String"/>

 <form-property name="city" type="java.lang.String"/>

 <form-property name="province" type="java.lang.String"/>

 <form-property name="postcode" type="java.lang.String"/>

 <form-property name="country" type="java.lang.String"/>

 <form-property name="email" type="java.lang.String"/>

 </form-bean>

 </form-beans>

Struts then uses the Introspection API (java.lang.Class) to create an ActionForm
class dynamically. The HTML forms parameters are copied from the HTML form into the
ActionForm bean, and this is passed into the execute() method of the Action class. This
works best when the HTML form is created using the Struts “JSP Custom Tags”, so the
Struts mechanism knows which form fields are associated with which HTML elements.

The Action class is the page-specific portion of the Controller. It responds to the forms
parameters and any other arguments in the request, performs some action (such as insert-
ing a person’s information into, or getting a list of items from, a database), and then for-
wards control to a View component. A nice feature is that Actions and Views are de-
coupled; the struts-config file specifies named mappings, such as that the “displayUsers”
forwarding might map to “listusers.jsp”. Thus if you change e.g., the names of the JSP
files, you do not have to recompile the Actions, but simply edit the “forward” mappings in
the struts-config file.

Struts Form Beans support the concept of Validation. If, after loading all the parameters,
the Form Bean considers itself invalid (as evidenced by the return from its validate()
method if it is a custom bean, or by use of an external, XML-scripted Validator Plug-In),
then Struts will simply forward back to the input form listed in the Struts configuration.
Since the HTML form is being generated by Struts JSP Custom Tags, any fields (other
than passwords!) that the user entered will automatically be remembered (from the Form
bean) and put back into the HTML form, saving the user from having to re-enter the ones
that are valid (or saving the developer from having to write code to re-populate the form).
This same mechanism can be used to write an “edit”-type form: just fetch the Form Bean

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 26

contents from the database, attach it to the HttpServletRequest object, and forward to the
input form. Presto! Instant editing page. Almost: you still have to write an Action to put
the changed data back into the database, but this is simplified by the near-universal use of
the Data Accessor pattern (Alur et. al., 2001). In the source for the Framework Catalog
web application (see Figure 5.0, “The Frameworks Catalog Online,” on page 50), this can
be seen in the AddFramework form and the EditFramework form. In all my examples the
View components are JavaServer pages, but the Struts documentation claims that other
View technologies such as Velocity can be used.

Here is part of a Struts-config file from one of my web sites. It shows both a dynamic
form-bean (no Java code required) and a conventional JavaBean used as a Form Bean (so
called because the framework will populate either type from the contents of a form). It
also demonstrates the “global forwards” which make maintenance of a larger site easier.
And it shows one example of an Action Mapping; this is the real tie-in from the URL
namespace to the action handling code in the Actions.

<struts-config>

<form-beans>

<!-- DynaFormBean for person table -->

<form-bean name="person"

type="org.apache.struts.validator.DynaValidatorForm">

 <form-property name="id" type="java.lang.String"/>

 <form-property name="email" type="java.lang.String"/>

<!-- many more String fields ->

</form-bean>

<!-- Java-based form bean -->

<form-bean name="product" type="jabacart.Product">

</form-bean>

</form-beans>

<global-forwards type="org.apache.struts.action.ActionForward">

<forward name="showcart" path="/showcart.jsp"

redirect="false"/>

<forward name="checkoutstart" path="/sales/checkoutstart.do"

redirect="false"/>

<forward name="checkoutfinish"

path="/sales/checkoutfinish.do" redirect="false"/>

<forward name="cartisempty" path="/cartisempty.jsp"

redirect="false"/>

</global-forwards>

<action-mappings>

<!-- Get a listing of products -->

<action path="/catalog"

input="/"

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 27

parameter="searchType"

type="actions.CatalogAction">

<forward name="success" path="/catalog.jsp"/>

</action>

</action-mappings>

</struts-config>

Struts provides convenient features for internationalization and validation; these are dis-
cussed in the Implementation section. Internationalization provides the means for users to
view a site in their choice of human language. A Validation service makes the site easier
for people to use (client-side validation in particular, since it stops errors before you can
submit the form, saving the time of a round-trip to the server for simple errors).

There are a number of add-on tools for Struts. James Holmes (http://www.jamesh-
olmes.com) provides the Struts Console, a free tool for editing the XML configuration files
required for Struts.

Exadel Struts Studio is, as the name implies, a sophisticated front-end development tool
for building Struts applications. There is a free “Community” edition, a “Standard” edition
and a “Professional” edition available for purchase. Pricing and other details may be
obtained from http://www.exadel.com/products/strutsstudio.htm, which also contains a
link to a detailed comparison of various versions (a legacy Professional edition, and the
current Standard and Professional editions).

While it does not provide WYSIWYG development of JSPs, it does provide a convenient
work-flow-like view of the “forwards” within a Struts project. The Pro edition can import
and work with an existing Struts project.

What is impressive about Struts Studio is that it does not provide any proprietary exten-
tions. With the exception of the struts-config.exadel file that stores the state of the image
file and the (project-name)_exadel_project.xml (both files are XML text, so can be stored
as text in a source code repository), there does not appear to be anything non-standard that
is inserted into the Struts project.

Struts Studio would appear to be a good tool for building Struts-based web applications.

Despite progress in other frameworks, Struts remains very popular among developers, and
has become a resume/C.V. requirement for many employment opportunities in the J2EE
area.

See Also: “Implementation using Struts MVC Framework” on page 44.

3.5 MC (Model-Controller) View-Agnostic Frameworks

Several frameworks are relatively agnostic about their View layer: some can use one or
most of the Template engines in “V (View) Frameworks - Template Engines” on page 21
instead of or in addition to JavaServer Pages.

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 28

3.5.1 Niggle

Niggle is a pleasant surprise to most developers in the amount of work it does for you.
Niggle aims to be a very-high-level processor for building database-backed web sites.
Once the database schema have been described in an XML format and “Niggle HTML”

(.nhtml) templates set up, the complete Java code1 to retrieve and validate all the HTML
fields, and insert them into a database, and show the view page acknowledging the inser-
tion, is shown here (this is excerpted from the file niggle/MyNiggleServletInteraction in
the code sections):

/** The AddPerson handler, invoked for action="addperson" */

public void execAddPerson() throws IOException {

 Record person = getNewRecord("people");

 fillInFields(person);

 OreoDataSource people = getDataSource("peopledb");

 people.insert(person);

 // Acknowledge addition into DB back to the user.

 page = getPage("niggle/thanks.nhtml");

 page.expose("title", "Thank you for registering");

 page.expose("firstname", person.get("firstname"));

 page.expose("lastname", person.get("lastname"));

 page.expose("email", person.get("email"));

}

While Niggle aims to be view-agnostic, the primary maintenance person on Niggle
recently became the primary maintainer of FreeMarker (“FreeMarker” on page 21) so it
will become better supported. In the View page thanks.nhtml that is used to acknowledge
the action, variables like ${title} and ${firstname} will be substituted with the
values given them in the expose() method.

Niggle takes advantage of the object-oriented nature of Java to enable easy data validation.
For example, in a RecordSet, each field can have a different type, and the defined types
can be used to validate or transform (“normalize”) the data. Predefined normalizations
include all-upper case, all-lower case, capitalize, trim leading/trailing space, and collapse
multiple spaces. Predefined validations - subclasses of the StringField class - include
email addresses and URL fields. My implementation defines a CountryCodeField class to
validate a two-letter lower-case ISO country code, ensuring that the user has selected a
country from an HTML <select> element where the display values are country names and
the parameter values are the corresponding ISO country codes.

Niggle is surprisingly easy to use, once you get over a few initial hurdles. The tutorial doc-
umentation is a bit sparse and there are a few strange points (such as the need to install the

1. Apart from a three-line Servlet, which just calls a superclass constructor; this could be obviated by
designing a generic dispatcher servlet as Struts and other frameworks have done.

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 29

XML configuration files not in WEB-INF but in WEB-INF/classes, so that they can be
loaded using the ClassLoader mechanism). But its ideas are good, and its code is very high
level. Niggle deserves to be better known and used; this attention would also presumably
lead to improvements in the documentation; I have submitted a couple of minor documen-
tation changes in the few hours it took to write the Sample Implementation.

See Also: “Implementation using the Niggle Framework” on page 39

3.5.2 DBForms

dbforms provides a relatively light-weight interface to a database. It is fairly easy to use,
but is limited to fairly straightforward data-related applications (hence the name). Indeed,
the project’s developers do not attempt to expand dbforms’ scope beyond this, saying on
their web site:

You may use DbForms in conjunction with common JSP-pages, Struts-
based pages, etc. This means that you are free to use DbForms where it
brings you the most benefits (dramatically reduce development efforts,
etc.) and to use other techniques if you think that they offer a better solu-
tion.

The dbforms package is hosted at http://jdbforms.sourceforge.net/.

See Also: “Implementation Using DBForms” on page 40

3.6 Full MVC Frameworks

The “full” frameworks either use one of the above-mentioned View technologies or imple-
ment their own.

3.6.1 Turbine

Turbine is the MVC framework of the Apache Jakarta project, and can be found at http://
jakarta.apache.org/turbine/. It offers a full MVC framework, and operates at several lay-
ers:

• Model layer defaults to “Torque”, Turbine’s own persistence layer, but can also use
other persistence layers such as OJB or Hibernate.

• View layer can use either Velocity or “standard” JSP pages

• Controller is provided by Turbine.

• HTML Forms Validation using Turbine’s own “Intake Service” (see below).

• The Logging layer uses the Jakarta Commons Logging and can therefore work with
logging frameworks such as Log4J, the J2SE 1.4 standard logging, or simple file log-
ging

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 30

As well, Turbine offers a plug-in based “services” framework. Some of the distributed ser-
vices include:

• The SecurityService provides a “user, group, role” permission system similar to that of
the Servlet standard “container managed security” but with finer-grained control. Can
be driven from user information in a database or via LDAP.

• The IntakeService offers forms validation and automatic mapping of forms parameters
to a bean, including validation, based on XML configuration files.

• The UploadService manages the uploading of files based on the standard HTML/HTTP
browser upload mechanism.

• The XSLTService can transform XML documents into other forms such as PDF or
HTML, using XSLT stylesheets

3.6.2 Expresso

Expresso is a heavy-duty framework. Expresso uses Struts underneath, but it seems quite a
distance below the surface. An Expresso developer typically implements at least an
Expresso Controller component (subclassed from the Struts Action class) an Expresso
model object (subclassed from Expresso DBObject), and an Expresso “Schema” which
ties these pieces together.

Expresso provides many nice facilities, like a user login mechanism, numerous setup and
testing capabilities, and more (see screen shot below).

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 31

The cost of all these is that Expresso applications, unlike simple web-apps and unlike
applications deployed with most of the other frameworks, are not self-contained and can-
not be deployed self-containedly. You can only deploy an Expresso-based application into
an existing Expresso deployment. The JSPs for a hypothetical module “demo” must be
copied into (Expresso WEB-ROOT)/components/demo, while the classes must be merged
into (Expresso WEB-ROOT)/WEB-INF/classes, and the supplemental jars merged into
(Expresso WEB-ROOT)/WEB-INF/lib. This latter process is the most error-prone,
because JAR file conflicts can cause either the web server to not start up or, more com-
monly, to cause the Struts ActionServlet not to start, which in turn causes the entire
Expresso service to become inoperative.

Further, if you decide to use some of their mechanisms but not others, you will have to
implement a lot of functionality. For example, in a self-registration web page such as the
sample implementations done in the research phase of this project, to use the fancy Regis-
tration controller, your “DBObject” implementation must either extend their User class, or
implement their UserInfo interface with approximately thirty methods (many of them sim-
ple setter/getter methods for the “standard” fields they have defined); you would basically
be writing a conventional Data Accessor or DAO from scratch.

Another error-prone aspect is that, in most examples, methods in the user-defined
"Schema" class are shown using introspection ("class.forName(String)") to load the
DBObject and Action classes (addDBAction and addController methods); if the class
names passed are incorrect, the developer must go looking through server logs to find the
cause of the error (the browser simply reports a NullPointerException), then recompile,
reinstall, and re-start the web application. Since the 5.0 release of Expresso, this can be
ameliorated by using overloaded forms which accept a Class object instead of a String,
that is, changing

addDBObject("jwfdemo.dbobj.PersonDB");

to

addDBObject(jwfdemo.dbobj.PersonDB.class);

will cause any errors to be detected at compile time. However, this can not be applied to
the names of the fields in the database, which can only be checked at run time.

As well, the name “expresso” is normally visible in all the path names, which doesn't look
very professional. Expresso Project lead developer Mike Nash claimed, in a posting on
their support forum, that you could eliminate this by installing Expresso as the "ROOT"
application; this sounds plausible for an installation using nothing but Expresso, but I have
not tested it.

3.6.3 M7

M7 is not just an MVC framework, but it is a framework implemented in the constraints of
the M7 Application Assembler program. It does not use Struts, but provides its own MVC
framework. I chose not to use it on the “TCP” project due to the fact that it is such a

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 32

heavy-weight environment; it seems that once you start using it, you have to keep using it.
There are a number of tags which it inserts into JSPs, for example, that are only in its
library. And the web site says something like “No runtime royalties for now” but does not
explain what the runtime royalties will be or when they will be charged.

There are also a few non-standard JSP elements that it uses.

For these reasons, we decided against using it in my work at the Toronto Centre for Pheno-
genomics.

3.7 Object-Oriented Frameworks

These frameworks use an object-oriented similar to Java’s AWT/Swing on the client side
for layout purposes, for event-based interactions, or both. They typically provide “HTML
Components”, Java objects which both prepare the HTML for rendering and handle the
storage of the resulting data into a database. To give an idea of the difference between tra-
ditional approaches such as Struts, and these component-based frameworks, consider the
notion of a Country selector in a name and address form. In traditional frameworks, you
have to set up the HTML for the <select>, then an <option> for each country. For exam-
ple:

<select name="country">

<option selected="true" value="/">Choose a country</option>

<option value="us">Canada</option>

<option value="us">USA</option>

... 200+ other entries ...

</select>

Then you still have to write code in the Servlet or Struts Action to retrieve the value of the
HTML forms parameter “country” and put it into a DAO or into a JDBC insert/update.

With the component-based frameworks such as JSF, SOFIA, or Velocity, each component
is responsible for generating its own HTML. In Sofia, you might replace the 225 lines of
HTML needed for a country code chooser, and the action handling to get it into the data-
base, with this one tag:

<salmon:input type="state" listtype="countries" name="country"
datasource="dsPerson:PERSON.COUNTRY">

The “type” attribute identifies that you want a list of state-related names. The “listtype”
attribute lets you choose from among several pre-fabricated lists (countries, US states,
Canadian provinces, etc.; the Canadian and Country lists were one of my contributions to
this open source framework that is included with Version 2.2 of SOFIA). The “datasource”
attribute is better thought of as "data destination",but the name comes from database tech-
nology, e.g., javax.sql.DataSource, where a DataSource is simply a conveniently means of
getting a connection to a database. In this example, the datasource attribute tells SOFIA to
put the selected country into the COUNTRY column in the PERSON table of the rela-
tional database identified by the dsPerson data source.

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 33

The only downside, if there is one, to these frameworks is that, since the components ren-
der the HTML, the components must all be activated before the page can be displayed for
the first time, resulting in less “lazy loading” than simpler frameworks. In my experience
with SOFIA, this cost is more than offset in the increased productivity that such frame-
works offer.

3.7.1 SOFIA

SOFIA, the Salmon (LLC) Open Framework for Internet Applications, is a comprehensive
MVC framework. While the SOFIA framework is completely open-sourced (under the
GPL), it ties into “best of breed” tools in a couple of areas, DreamWeaver for JSP develop-
ment and either the open-source Eclipse or the commercial IntelliJ IDEA for object-ori-
ented code engineering. Dreamweaver has been provisioned with a plug-in that lets it
understand the SOFIA JSP Tags, making a very powerful editing tool. SOFIA's maintain-
ers did mention (private E-mail communication, February, 2004) that the framework can
be used without these proprietary tools, albeit with less convenience. I have had the oppor-
tunity to work with SOFIA on a large web project at the Toronto Centre for Phenogenom-
ics, and found it very productive. Its extensive use of JSP tags and HTML components
means that one can build powerful web applications with fewer lines of hand-written code
than other frameworks might require.

SOFIA Model classes are very powerful; they provide a complete interface to an SQL
table in a database, and support joined tables. This has been extended recently, with fund-
ing from my client the Toronto Centre for Phenogenomics, to provide “table inheritance”
so that, for example, common fields between Person and Company, such as Street Address
and Primary Telephone, can be placed in a parent table (called, say, Entity); the child
tables Person and Company then add only the unique fields (such as Mobile Phone and
Company Name respectively). In SOFIA 2.3, the inheritance of the Model classes can
exactly reflect the inheritance structure of the tables.

SOFIA Controller classes provide action handling. There are numerous Controller meth-
ods, such as

pageRequested();

pageSubmitted();

These indicate, respectively, that the page is being displayed, and that the user has clicked
a Form Submit button on the given page. As well, the HTML form components have an
addSubmitListener() method which takes a SubmitListener argument. The one method in
the SubmitListener interface is:

public boolean submitPerformed(SubmitEvent e)

throws Exception;

This is intentionally very similar to the client-side GUI ActionListener interface, whose
one method’s signature is

public boolean actionPerformed(ActionEvent e);

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 34

Both Model and Controller classes are generated by SOFIA, using one of the IDEs men-
tioned above or using a program called IDETool directly. The Models are generally com-
plete; the Controllers are skeletons into which you need to write the actual action handling
code. Either class can be re-generated and your local changes will be preserved if they are
made in accordance with comments contained in the file.

See Also: “Implementation Using SOFIA” on page 40

3.7.2 JavaServer Faces

A relative newcomer to the Frameworks arena, JavaServer Faces (JSF for short) has the
official blessing of Sun Microsystems, for which reason it will continue to grow in impor-
tance. JavaServer Faces provides a component-based Object model for “GUI” compo-
nents. As well, Sun’s Creator Studio product (Sun 2004) provides a Visual Basic-like
graphical tool for building pages, and is clearly positioned as a competitor to Microsoft’s
ASP.Net for providing an easy-to-use tool for building web applications.

JSF itself provides an object model framework similar in some ways to SOFIA. A single
Front Controller receives all requests for “.face” files and arranges for the correct process-
ing of each request, based upon the URL and any forms parameters. The view rendering is
done by components in the framework. Where it differs is that JSF does not provide data
model support, though it does provide for POJO JavaBeans to receive the data from a
request and a means to activate code in the bean or in a handler upon activation of an
HTML form. This means more work for developers building a complete application from
scratch, compared to SOFIA’s model generation code.

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 35

JSF also differs from SOFIA in providing an explicitly documented flowchart for the inter-
operations among the various components. This diagram is reprinted from Figure 17-4 of
Sun’s documentation (Sun JSF, 2004)

Even when a page is only being displayed, the OO components still must render the view,
including any that have initial or saved values. If a form is being submitted, the validators
and application logic must also be invoked.

JSF uses an ActionListener framework similar to that of client-side Swing GUIs and of
SOFIA above.

JSF also provides clear documentation for subclassing components. A good explanation
for practicing developers is in Dudney (2004), where an example is presented of a custom
component for credit card validation.

Because of JSF’s importance, there is a growing body of free and commercial support
tools and add-ons. James Holmes (http://www.jamesholmes.com) has written the Faces

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 36

Console, a free tool for editing JSF’s XML configuration files; here the Faces Console is
shown editing the configuration for my JSF Sample Implementation.

JSF also has a public community web site, http://www.jsfcentral.com/. The source for two
implementations of JSF is publicly available: Sun’s master site is hosted at http://java.net/
, and the open source project myfaces.org is a free, open-source re-implementation of the
JSF specification. Companies such as Otrix (http://www.otrix.com/) are now starting to
market components specifically-built for use with JSF.

See also: “Implementation Using JavaServer Faces” on page 46.

3.7.3 webonswing

This project ambitiously aims to allow direct use of Java Swing (client side GUI) to render
HTML pages. Unfortunately, as of September, 2003 their web site had posted neither any
source code nor any design documents, so it is difficult to see what direction this project
will be moving in.

Accordingly my implementation using this framework is the most efficient from a coding
point of view, and the most minimal, consisting of exactly zero lines of code. However it

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 37

cannot be proven that implementation using this technology conforms precisely to the
specification.

I recently discovered that they did finally release in July, 2004 but found out too recently
to examine their first release.

See also: http://webonswing.sourceforge.net/

3.8 Meta-Frameworks

3.8.1 Keel Framework

The Keel Framework provides a meta-framework into which many other frameworks can
be plugged, allowing the developer to “pick and choose”. Frameworks supported in Keel
2.0 include Avalon, Cocoon, Struts, Hibernate, Velocity, WebWork2, Axis, Maverick,
JBoss, OpenJMS, Turbine, Lucene, BSF, Jelly, JFreeChart, Quartz and others. Many of
these are mentioned in this report; of those that are not, Avalon is a server framework (the
original basis of Keel), Cocoon is a web publishing framework, JBoss is a J2EE server,
Axis is a Java Web Services / SOAP toolkit and OpenJMS is an implementation of the
Java Message Service API, Lucene is a Java Search Engine, BSF is the Bean Scripting
Framework and Jelly is a Java scripting language, JFreeChart is of course a charting pro-
gram, and Quartz is a scheduling program (analogous to the well-known Unix “cron”
facility. So it is clear that Keel provides a very wide range of services, and is much more
widely construed than just a Web Application Framework.

Keel makes extensive use of Java interfaces to isolate these frameworks from the applica-
tion and from each other; Keel calls this “Component Oriented Programming” or COP.
Keel also uses “Aspect Oriented Programming” or AOP (Elrad, 2001) and the Inversion of
Control (IOC, see above under “Other Relevant Design Patterns” on page 17) to reduce
coupling among parts of the application and the framework. The connections are estab-
lished in a pair of XML-based configuration files that can easily be edited to provide major
changes in the implementation, without having to change a line of code in the user-written
part of the application.

Information about Keel can be found at http://www.keelframework.org/.

3.8.2 Spring Framework

While Keel provides “the most of all frameworks”, Spring provides ‘the minimum needed
to work successfully”, but does offer some support for co-existence with other frameworks
(e.g., Struts). Spring is a light-weight framework that promises lower overhead for devel-
oping all types of J2EE applications. It provides a “Web MVC” interface to the frame-
work. Similar in some ways to Struts, Spring’s Web MVC offers a controller servlet that
dispatches to actions, supports rendering via “views”, and can support various “M” frame-
works for the Model, such as Hibernate.

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 38

The main web site for Spring is http://www.springramework.org/. A contributed tutorial
on their Web MVC can be viewed at http://www.springframework.org/docs/MVC-step-by-
step/Spring-MVC-step-by-step.html, while the “official” documentation for Spring Web
MVC can befound at http://www.springframework.org/docs/reference/mvc.html.

4.0 Implementing a Simple Web Application

For the evaluation portion of the research, I chose to implement the processing for a sim-
ple web-based HTML form using a variety of Java-based technologies:

• Servlet-only (“worst case”)

• JSP-only (“worst case”);

• Servlet and JSP (“servlet dispatcher”; MVC, not using a Framework)

• MVC using the Niggle Framework

• MVC using dbforms

• MVC using Struts MVC Framework

• MVC using SOFIA

• MVC using JavaServer Faces

Because of the conflicting requirements for Jar files, each implementation was done as a
separate Web Application context. Each implementation is stored in a Web Application
structure for ease of use by those wishing to replicate any of my work. Each is also set up
as an Eclipse Project (Eclipse.org, 2004) by having project metadata stored in each project
directory.

4.1 Servlet-only (“worst case”)

Having a Servlet generating HTML is a bad idea. Every bit of HTML must be wrapped in
a call to out.println(). Quoted attributes must be escaped, or alternating double and
single quotes used; either is a mess:

out.println(“<form action=\”/myservlet\”>”);

Nonetheless, it is certainly possible, and it’s what we did before JavaServer Pages were
available. This implementation of the Servlet code to receive and acknowledge the con-
tents of the Registration form consists of 129 lines (jwf.servletonly/Servlet.java); this
includes code to locate the JDBC DataSource object and pre-compile a JDBC insert state-
ment (Connection.prepareCall()), but has no error checking, and provides a crudely-for-
matted HTML response.

4.2 JSP-only (“worst case”);

This Implementation goes to the opposite extreme, and does all the work inside a JavaSer-
ver page. This is how JSPs were used immediately after their introduction, before the divi-

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 39

sion of labor became common knowledge. It consists of 95 lines (jwf.jsponly/process.jsp),
of which about two thirds are Java code borrowed from the Servlet-only implementation.
It is similarly short on error handling.

4.3 Servlet and JSP (MVC, not using a Framework)

In this version of the Servlet, I use the javax.servlet.RequestDispatcher
interface to explicitly forward from the Servlet to the “acknowledgement” JSP. I also pro-
vide an error-formatting page for the case where the JavaBean reports that not all its inputs
are valid. The Servlet size is only 67 lines, but the “thank you” page (27 lines) and the
error handler (36 lines) bring the total to 130 lines. This provides a minimal but workable
implementation of the Model-View-Controller pattern. The Servlet is the Controller, the
Model is the Person bean, and the View consists of the two JSP files.

This version and those following use an external JavaBean class, called Person, to repre-
sent the data or state of the application - the Model, in MVC terms. This is simply a class
with fields for name, address, phone number, and so on, plus trivial get/set methods. It has
one additional method, for validation, simply to ensure that the data are adequate - certain
fields are required, and this logic is imbedded here. As well, the JDBC code has been
excerpted into an additional class, called PersonDAO after the Data Accessor Object pat-
tern (see Section 2.5.3, “Other Relevant Design Patterns,” on page 17).

4.4 Implementation using the Niggle Framework

Niggle (see “Niggle” on page 28) is a little-known framework that probably deserves
wider acclaim. One little annoyance of the current version of Niggle is that, for each
“action” (e.g., add a customer, add an item to the shopping basket, etc.), in addition to
writing the action handler class, you must write both a dummy NiggleServlet sub-class -
which is invariably null, e.g.,

public class MyNiggleServlet extends NiggleServlet {

}

By contrast, Struts and most other frameworks provide a “generic” controller Servlet. This
could be provided in a future version of Niggle.

The Niggle action handlers, which are called “InterAction” classes, typically get a Form
object (which is constructed dynamically from an XML descriptor) to hold the input data,
then call the inherited method fillInFields() to cause Niggle to extract the HTML forms
data and populate the Form object. Then the forms data can be processed in whatever man-
ner is appropriate to the application. In my example, I insert it into the database using the
OreoDataSource (the Oreo package is part of Niggle). Then I get the acknowledgement
page and fill in its fields using page.expose(); the resulting page will be displayed by Nig-
gle as its way of displaying the results of this action.

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 40

Niggle thus implements the MVC pattern. The Form object is the model or data, the Nig-
gleServletInteraction subclass is the controller, and the output pages (which are by con-
vention named *.nhtml, for Niggle HTML) represent the View.

In the Niggle implementation I also demonstrate use of a custom validator class. Niggle is
one of the frameworks provided here that supports automatic validation. These typically
provide for “required” fields in an HTML form, and also provide a limited set of pre-
defined validations for common field types such as an E-mail address. To explore the
extensibility of Niggle validations, I wrote a Niggle-specific validator subclass for validat-
ing two-letter ISO country codes (“uk”, “ca”, “us” and the like). The benefit of such vali-
dators is further extraction of logic and code re-use: this validator can be used in any
Niggle web application that uses a country code in an input form.

4.5 Implementation Using DBForms

To add dbforms support to an existing Web Application, one must perform the following
steps:

- add dbforms_config.xml to WEB-INF, and tailor it for your web application;

- add dbforms_errors.xml to WEB-INF, (may not need tailoring initially);

- add validation.xml to WEB-INF: note that this conflicts with Struts' validation.xml, so if
you are using both frameworks in the same Web Application you'd need either to merge
them and hope for the best :-) or pick a new name, like dbforms-validation.jar;

- add the dbforms servlet in WEB-INF/web.xml, tailoring the servlet for the locations of
most of the above files;

- add dbforms.jar to the WEB-INF/lib directory

- add dbforms.tld to WEB-INF (do not modify);

- add log4j.jar, log4j.properties, commons-beanutils.jar, commons-logging.jar to WEB-
INF/lib;

Of course, if you are starting afresh, you would probably begin with one of the provided
demos, which has all these pieces in place.

The dbforms package is primarily controlled by one configuration file at runtime

4.6 Implementation Using SOFIA

SOFIA, the Salmon Open Framework for Internet Applications, provides a powerful MVC
interface, including extensive support for a data Model in a relational database. Its IDE
integration allows you to generate both the model for a database table (or join), and the
skeleton of the Controller for a given SOFIA JavaServer Page. My implementation of the

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 41

simple Name-Address form for SOFIA is based on SOFIA’s “normal” input form rather
than the simple form used in the other examples. SOFIA has extensive support for what
they call “List/Detail” pages; the list page consists of a search-criteria list and a partial list
of the table, while the “detail” page shows the detail for one record being added, updated,
or deleted.

The following screen shot shows the List page from my SOFIA implementation, whose
filename is index.jsp. Note the Add and Search buttons at the top, followed by the search
fields in the top half, and the partial list in the bottom half, with a page navigator. Because
SOFIA is an HTML-OO framework, most of this page is provided by components. The

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 42

list at the bottom, for example, is provided by a DataTable, the JSP code for which is
shown after the illustration.

SOFIA provides an extensive JSP Tag Library of high-level constructs. The list box in this
figure was produced in its entirety by a few JSP tags. While there appears to be a lot of
code because most of the default attributes were provided by the IDE tool which generated
this, in essence all that is needed is:

<salmon:datatable>

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 43

<salmon:datatableheader>

...<salmon:tr> and <salmon:td> tags ...

<salmon:datatablerows>

...<salmon:tr> and <salmon:td> tags ...

</salmon:datatable>

The full form is shown here (slightly reformatted to fit this page)

<salmon:datatable name="people" datasource="jwf"

clicksort="true"

rowsperpage="10" pageselectortype="text"

rowsperpageselector="false"

width="100%" align="Left" cellpadding="5"

cellspacing="0">

 <salmon:datatableheader>

 <salmon:tr>

<salmon:td valign="top">

<salmon:font type="TableHeadingFont">Name

</salmon:font></salmon:td>

 <salmon:td valign="top">

<salmon:font type="TableHeadingFont">

 Address</salmon:font>

</salmon:td>

 </salmon:tr>

 </salmon:datatableheader>

 <salmon:datatablerows>

 <salmon:tr>

<salmon:td valign="top">

<salmon:a name="nameLink" href="details"

datasource="jwf:'%details?id='+people.id">

 <salmon:text name="rowName" text="Name here"

datasource="jwf:people.firstname+' '+people.lastname"

font="LargeLinkFont"/></salmon:a>

</salmon:td>

 <salmon:td><salmon:text name="rowAddr"

text="City Here"

datasource="jwf:people.city"/></salmon:td>

</salmon:tr>

 </salmon:datatablerows>

 </salmon:datatable>

The “Detail” form is not shown but it is similary powerful, and is used to add, delete, or
update listings.

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 44

The important parts of the implementation are the two JSPs, one Model, and a Controller
for each of the two pages. These are in the “jwf.sofia” subdirectory of the source code.

Difficulties with SOFIA arise from their non-standard Properties class (which is shared by
all web applications within a server instance). This has been corrected in the upcoming
version 2.3 (Dubinsky, private correspondence).

Also, SOFIA’s error reporting is lax, on the theory that you normally use the IDE tools and
external tools such as DreamWeaver for all editing. For traditional Java code developers
this can be frustrating, as a simple change that isn’t quite right will often cause a page to
reload continuously with no real indication of the error, requiring perusal of log files to
deduce the underlying cause of the error. While these are less common when working
within the supported tools, they do still occur on occasion, and can be vexing.

4.7 Implementation using Struts MVC Framework

Struts provides explicit support for the MVC pattern. A single controller Servlet acts as the
Controller for all Actions. Action handlers are written as subclasses of the class
org.apache.struts.actions.Action. Adjunct “forms beans” for holding data from HTML
forms are also provided; these are explicitly not part of “the Model” but simply data helper
objects that can be passed into the application-specific “model” code. Forms beans can be
written by the user in Java, but it is also common to use dynamically-generated forms
beans, build by Struts from an XML configuration file.

Struts applications are often internationalized from the start by use of series of JSP custom
tags which simply extract the relevant strings from a standard ResourceBundle. For exam-
ple, the JSP for the Struts implementation page starts off (after a bit of error checking) like
this (file jwf.struts/index.jsp):

<html:html locale="true">

<head>

 <title><bean:message key="insert.title"/></title>

</head>

The <html:html> tag invokes the JSP Custom Tag named “html” from the “html” JSP
tag library provided with Struts; the locale=”true” attribute informs the tag to get the
preferred Locale from the user’s browser and use it to find the correct language resources.
The matching key and value in the English-language ResourceBundle text file (Applica-
tionResources.properties) is:

insert.title=Please sign up with us!

while the Spanish version (ApplicationResources_es.properties) contains this:

insert.title=¡Registrarse con nosotros!

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 45

The page will thus view correctly1 for either of these locales (the only two that I have pre-
pared localization ResourceBundles for).

The Internationalization feature appears to work nicely, but making any changes does
require reloading the web application (see “Slower to live web site” on page 52), because
the “properties” files containing the internationalized text are only read when the Struts
ActionServlet is loaded or reloaded.

Struts supports forms bean validation in several ways. User-defined forms classes can
override the validate() method. Alternately, the “Validator Plug-in”, a standard component
of Struts despite the name, can be used. This is controlled by another XML configuration
file, and provides validation for any Forms bean (whether dynamic or hand-coded).

The Struts Validator provides extensive validation capabilities. And unlike some of the
other frameworks such as Niggle (see “Niggle” on page 28), Struts' validator embeds a
significant knowledge base of JavaScript validation.

This can potentially eliminate a lot of HTTP round-trip interactions by performing the val-
idation in the client's browser.

To configure the validator, one need only:

• put a few lines in struts-config.xml, referring to the (generic) validation-rules.xml and
the application-specific validation.xml

• write the validation.xml for the forms that need validation

1. Barring any errors in my Spanish translations; for these, I apologize in advance to any Hispanic readers.

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 46

For an example of client-side validation, see Figure 5 on page 46.

In my Struts sample implementation, the Action subclass InsertAction, called after the
form has been filled in and submitted by the user and optionally validated, is 68 lines long.
There is a 20-odd line configuration for the validator. This implementation uses the Person
bean class and PersonDAO database code from the previous implementations. Because the
Struts version is internationalized, there are also hundred-line-long files containing the
language inserts for each language. This code is in the jwf.struts subdirectory.

4.8 Implementation Using JavaServer Faces

The Hello Form implementation in JSF is shown here.

FIGURE 5. Struts Client-Side Validation

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 47

The implementation is stored in the jwf.jsf subdirectory, and consists of:

• A trivial index.jsp which redirects to /form.face; it is a requirement that the default page
either transfer to, or contain a link to, a URI with the extension.face, using the default
page type mappings in web.xml. It is also a requirement that .jsp and .face be distinct,
since each type must be processed by the correct servlet (this is analogous to the use of
.do and.jsp within the Struts framework).

• Form.jsp (which is the visual part of form.face), which uses two JSP tag libraries pro-
vided by Faces to specify the input form fields. Extracts from this JSP appear here:
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

...

<f:view>

<h:form id="personForm">

 <table>

 <tr><td>Name: *</td>

 <td><h:inputText id="firstName"

 value="#{PersonBean.firstName}" size="10"/>

 <h:inputText id="lastName"

 value="#{PersonBean.lastName}" size="18"/>

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 48

 </td></tr>

 <tr><td>Email: *</td><td>

 <h:inputText id="email"

 value="#{PersonBean.email}" size="30"/></td></tr>

 ...

 <h:commandButton id="submit"

 action="#{SaveHandlerBean.doSave}" value="Register!"/>

This page is, as it is in most of these frameworks, a mixture of “pure HTML” and JSP
tags. Note also the use of the value substitution syntax #{value...} which was presum-
ably chosen to avoid conflict with the JSP 2 expression language (el), which uses
${value...}.

• WEB.XML/faces-config.xml, which specifies the navigation rules, such as this one
which says to go from the form to the acknowledgement page if the action returns the
status value “signup”:
<navigation-rule>

 <from-view-id>/form.jsp</from-view-id>

 <navigation-case>

 <from-outcome>signup</from-outcome>

 <to-view-id>/thankyou.jsp</to-view-id>

 </navigation-case>

</navigation-rule>

This file also contains information about the two managed beans, the Person Bean
(reused from the earliest Servlet) and a custom-written action handler to save a valid
submitted form’s content to the database.
<managed-bean>

 <managed-bean-name>PersonBean</managed-bean-name>

 <managed-bean-class>beans.Person</managed-bean-class>

 <managed-bean-scope>session</managed-bean-scope>

 <managed-property>

 <property-name>firstName</property-name>

 <property-class>java.lang.String</property-class>

 <value></value></managed-property>

<managed-property>

<property-name>email</property-name>

<property-class>java.lang.String</property-class>

<value>@</value>

</managed-property>

</managed-bean>

<managed-bean>

 <managed-bean-name>SaveHandlerBean</managed-bean-name>

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 49

 <managed-bean-class>jwfdemo.SaveHandler</managed-bean-
class>

 <managed-bean-scope>request</managed-bean-scope>

 <managed-property>

 <property-name>person</property-name>

 <property-class>beans.Person</property-class>

 <value>#{PersonBean}</value>

 </managed-property>

</managed-bean>

The first managed bean is the Person, kept in Session scope to avoid extra object cre-
ation and to keep values from one invocation to the next. Note that each property must
be listed here; this is tedious but there are tools to automate this. The email property is
given a default value of “@” to remind the user what form of address is expected; this is
shown in the screen shot above.

The second managed bean is the Action Handler. It is created at request scope since it is
only used for submission, and it has a Person property which causes its setPerson()
method to be called with a reference to the Person object. The handler’s doSave()
method is invoked when the submit button is pressed; this is specified in the command-
Button JSP tag of the form JSP.

• The Java code for the Action Handler is in file jwfdemo/SaveHandler.java. It does not
use the ActionHandler interface because it is “loosely coupled”, using the faces-config
file. Tighter coupling typically involves Java code calling the add action listener meth-
ods to register created instances of listeners. The code is basically as follows:
import beans.*;

public class SaveHandler {

 private Person thePerson;

 private PersonDAO dao;

 public SaveHandler() {

 try {

 dao = new PersonDAO();

 } catch (NamingException e) {

 // standard error handling omitted

 }

 }

 public void setPerson(Person p) {

 thePerson = p;

 }

 public String doSave() {

 dao.insert(thePerson);

 return "signup"; //indicate success

 }

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 50

}

This, plus the standard web.xml file to provide the mapping to the Faces Servlet, and the
simple acknowledgement page thankyou.jsp, rounds out the implementation using JSF.

5.0 The Frameworks Catalog Online

In addition to the Implementations described above and suggested in my original research
proposal for this Certificate Module, I have also implemented a Web Frameworks Catalog
web application which will make much of this research available to the Java Developer
community. This site consists of the summary information about each Framework along
with links to its home page and the Sample Application implementation, if available. This
was implemented entirely as a Struts application. There is a form submission page used
for inputting and updating pages (this section is password protected), and a View Catalogs
page which looks something like Figure 6 on page 50.

FIGURE 6. Catalog Web Site

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 51

6.0 Frameworks: Summary and Conclusion

6.1 Drawbacks of Frameworks

The use of frameworks continues to grow, thus confirming the benefits they provide to
developers. However, these benefits are not without cost: frameworks impose some over-
head.

6.1.1 Debugging

Debugging is generally harder when using a Framework than when working directly with
Servlets and JSP. For example, Struts creates a single point of failure, the ActionServlet. If
the ActionServlet fails to initialize due to, say, a parsing error in its main file (struts-con-
fig.xml), then the entire web application will be disabled until the error is rectified and the
context or the web server reloaded. Needless to say, this requires that development organi-
zations place a higher value on testing and on configuration management than is some-
times the case in smaller shops.

Both Struts and DbForms, and probably other frameworks that provide framework-spe-
cific configuration mechanisms are vulnerable to failure here. DbForms, for example, sim-
ply reports when there is trouble with the DBForms Configuration “Can not find CONFIG
object in Application Context” It does not report the actual name the object should have
been stored under. This makes it difficult to track down the root cause of the error. WIth
Struts, there is occasionally confusion between the string name used to store a value in the
Http Session, and the name of the Java constant used to specify the Java name as a String
constant.

As well, difficulties or curious design choices in the underlying server can affect reliabil-
ity. Tomcat 4.x, for example, is vulnerable to “Realm” failures. The “Realm” is the unit of
authentication namespace for a given web application using J2EE “container-managed
authentication”. Each different web app may have a different Realm by which users of that
App must authenticate. If one of these is a JDBC-based realm, and the database can not be
contacted, the resulting exception will cause the entire Tomcat server to fail to start up. As
you can imagine, this “feature” is not appreciated by, for example, Internet Service Pro-
viders trying to server multiple clients with a single Tomcat instance. Nor, I might add, by
web developers who often run a large number of web applications on a notebook...

Speaking of Tomcat, one of the most annoying features is the failure to print filenames.
Both when a Zip file specified by name is missing, or when an XML file contains syntax
errors leading to parse failures, the server prints a stack trace indicating in great and gory
detail where the error occurred, in terms of Java method calls, but gives not one iota of
information regarding the name of the offending file. Both are issues of the underlying
software used by Tomcat, but Tomcat really should catch these errors and include the file-
name in the report.

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 52

6.1.2 Slower to live web site

With most of these frameworks, the developer loses the “instant recompile” flexibility of
the original JavaServer Pages concept. A JSP is a straight HTML file with some Java
embedded into it. To update a JSP, you can simply edit the “master” copy of the file right
in the WebServer directory (or update a master copy, commit it to a source archive such as
CVS, and then copy it to the web directory); the very next access to the page via a URL
will result in immediate recompilation. It is thus common (generally only while testing!)
to run a web site directly out of one’s “source” directory; this author has a number of “in
development” web sites that are Tomcat Contexts running directly from subdirectories of
his home directory on his development machine.

This approach breaks down with frameworks such as Struts, in which, for example, almost
the entire textual content of a JSP is not embedded in the page, but output from a Java
“properties” file by use of a number of “JSP tags” embedded in the page. As these proper-
ties files are loaded into memory when the Web Context is initialized, it is typical to have
to rebuild the files in the Context for even the simplest change, or else to “reload” the web
server (which causes delays that are unacceptable on production servers) or at least, to
reload of the particular “web context”. The difficulty of this is mitigated somewhat by the
Ant task for connecting to the Tomcat “Manager” servlet and reloading a given context;
this is usually called from an “install” or “deploy” target to copy the updated files and
immediately reload the server.

6.1.3 More Artifacts

The use of any of these frameworks imposes an increase of complexity, in that a greater
number of individual artifacts must be assembled, compared to writing a straight Servlet
or JSP solution. Even the simplest framework has some baggage; to add dbforms support
(see Section 3.5.2, “DBForms,” on page 29) to an existing Web Application, you must per-
form the following steps:

- add dbforms_config.xml to WEB-INF, and tailor it for your web app;

- add dbforms_errors.xml to WEB-INF, (may not need tailoring initially);

- add validation.xml to WEB-INF: note that this conflicts with Struts' validation.xml, so
either merge them and hope for the best :-) or pick a new name, like dbforms-valida-
tion.jar;

- add the dbforms servlet in WEB-INF/web.xml, tailoring the servlet for the locations of
most of the above files;

- add dbforms.jar to the WEB-INF/lib directory

- add dbforms.tld to WEB-INF (do not modify);

- add log4j.jar, log4j.properties, commons-utils.jar, commons-logging.jar to WEB-INF/
lib;

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 53

Of course, if you are starting fresh, you would probably begin using the “blank” demo,
which has all these pieces in place.

The Implementation directories contain approximately the following artifacts. Each entry
of the form n/m shows first the number of files, then the number of lines of text. The
HTML-based pages have been accumulated in the HTML column; error handling pages
have been excluded as they have not been uniformly provided in all the examples. Java
source files for a minimal implementation are accumulated under the heading Java;
optional validation classes have been excluded. All XML configuration files have been
accumulated into the last, except that build.xml files have been excluded.

6.2 Frameworks Benefits

The primary benefit of using a Framework is the significant amount of code that you do
not have to write and maintain.

A framework provides many facilities that you would otherwise have to write yourself. A
single servlet which can pass control to one of a dozen or so smaller Action classes is eas-
ier to write (and maintain) than a dozen full-function self-contained servlets. A call to a
method that looks up a Struts ActionForward and returns it is more convenient than find-
ing a ServletDispatcher and invoking it. A framework that provides objects to hold values
across multiple invocations - so the user need not re-enter the fields that previously passed
validation - is much more convenient than one that does not.

A second benefit is the “shared knowledge” phenomena. Developers working on a project
that is based upon one of these frameworks will use the framework as a vocabulary, as in
“Use a DynaActionForm for that page” or “use an XML form for that list page”. As well,
when the need arises to hire additional developers, for one of the mainstream Frameworks
(particularly Struts), it is often possible to find developers already experienced in use of

TABLE 3. Framework Artifacts

Framework
HTML,
JSP Java Jar Files

XML
Files

Servlet Only 1/42 1/143 0 1

JSPOnly 2/137 0 0 1

Servlet+JSP 3/111 1/70 1 1

JSP+JavaBean 2/99 0 1 1

dbforms 2/83 0 4 5/1127

Expresso 2/47 3/196 10 5/510

Groovy 1/30 1/25
(groovy)

5 1/39

JSF 3/66 1/39 9 2/104

Niggle 2/55 2/66 ?? 2/50

SOFIA 2/182 3/600(!) 3 2/79

Struts 2/99 1/68 8 4/1134

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 54

that particular framework; these developers can be integrated much more quickly into the
development process than those who required training in the framework. This tends to pro-
vide a self-reinforcing accumulation of expertise around particular frameworks such as
Struts, not because they are better, but because managers perceive them as relatively
“safe” because other managers have already chosen them. Moore (2002) discusses of the
“safe adopter” or “herd mentality” that drives this.

6.3 Reflection

In this report I have developed a new Taxonomy for classifying Java Web Application
Frameworks, based upon which parts of the MVC trinity a framework actually imple-
ments and on whether it uses “HTML Objects” to represent HTML elements on the page.
Some of these distinctions may be seen as arbitrary. On first glance, the distinction
between clever JSP tags such as those used by Struts and the HTML Components used by
SOFIA or JSF might appear contrived. However, the distinction is valid: HTML Compo-
nents are held as fields in a Controller class and thus have an ongoing state, whereas JSP
Tag handlers are instantiated upon each use, so they are basically stateless. Further, JSP
tags do not have an event model associated with them,while HTML Components, at least
in SOFIA and JSF, each have such a model. So this distinction has merit.

Where the Taxonomy gets in a bit more trouble is in the “MVCO” and “Meta” categoriza-
tions. I have not further divided these categories to indicate which frameworks provide all
three parts of the MVC model. For example, the “Meta” Spring Framework does not pro-
vide its own model, so it should be “VCO”, but my reliance on Occam’s Razor to avoid a
huge number of categories lets me plead only that Spring does make it easy to interface
with a variety of other M-type frameworks.

Accordingly, while it is not perfect, I believe that my Taxononomy will provide a useful
tool in categorizing and comparing Java Web Application Frameworks and a good basis
for continuing analysis by myself and others.

6.4 Recommendations

I would advise any organization undertaking a Java web application development project
today to consider adopting Struts if they want the greatest pool of already-trained develop-
ers; JSF if they want to get in on “the next wave” and maximize technology lifespan, and
SOFIA if they want the best path tobuilding a working web site. This recommendation
would be accompanied by a caveat that they also evaluate the many other quality frame-
works that are freely available, especially the Spring and Keel Frameworks for their
reduced overhead and increased flexibility.

6.5 Conclusion

The use of Frameworks in Web Application Development continues to increase because of
the benefits outlined in Section 6.2. As in technology as a whole--where users have settled
on MS-Windows, Mac and UNIX platforms--there tends to be a settling-out around some

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 55

of the main frameworks. Struts in particular, now that it has been rendered almost obso-
lescent by newer frameworks such as JSF, is becoming “established”:many recruiting
agencies now require Struts competence for Java Web hirings, and a major technology
training vendor is planning on launching a course on Developing Web Applications with
Struts in early 2005.

I believe that this trend will continue and accelerate, with Struts and JSF becoming the two
major commercially-utilized frameworks for Java MVC web applications into the 2005-
2006 time frame and beyond.

The pace of change in the Web Applications world will keep going, and good tools will
always be a source of value.

6.5.1 Future Directions

I would like to do a more detailed implementation of larger applications using some of the
leading frameworks, such as Struts and JSF, to ascertain whether the notions of scalability
continue as larger applications are developed.

I would like to find research funding to develop the following modules; these might be
useful deliverables in future modules of this MSc program, and would be generally useful
to the open source Java web application community:

• Eclipse plug-ins for 1) building Web application projects quickly (setting build class-
path, build.xml, and so on), and 2) visual editing of JavaServer pages. The latter would
work with any of the packages that are based on JSPs, and could perhaps be built
quickly on top of Swing’s HTML Editor Kit.

• A complete MVC web framework based on lessons learned from all of the other frame-
works.

References

Alur et. al., 2001 Core J2EE Patterns: Best Practices and Design Strategies book,
2001, by Deepak Alur, John Crupi, Dan Malks. Patterns are online
at the book’s web site, http://developer.java.sun.com/developer/
technicalArticles/J2EE/patterns/, as of June 2003.

Barracuda, 2002 Comparison paper online at http://barracuda.enhydra.org/
cvs_source/Barracuda/docs/landscape compares Barracuda with
Struts, Turbine, Velocity, and many more.

Berners-Lee, 2000 Weaving the Web, Harper Business; 1st edition November, 2000,
ISBN: 006251587X. See also his personal site, currently online at
http://www.w3.org/People/Berners-Lee/.

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 56

Bishop et al. 2002 Kevin W. Bishop, Arlen Johnson and Deb Wentorf, From dated to
dynamic: a campus newsletter unfolds as a web service, in Pro-
ceeding of the 30th annual ACM SIGUCCS fall conference on User
services conference, 2002, Providence, Rhode Island, USA. Note
that their use of Web Service in the title is misleading under current
terminology; it is a Web Application, not a SOAP-based Web Ser-
vice.

Brittain/Darwin, 2003 Tomcat: The Definitive Guide, Jason Brittain and Ian Darwin,
O’Reilly, 2003.

Burbeck, 1987 Model-View-Controller, original paper, available online at http://st-
www.cs.uiuc.edu/users/smarch/st-docs/mvc.html (as of June 2003).

Darwin, 1999 Ian Darwin, “GUI Development with Java”, in Linux Journal, May,
1999. SSC, Seattle, WA, USA. ISSN 1075-3583

Darwin, 2001 The Java Cookbook, O’Reilly, 2001. JabaDot is discussed at the
end of Chapter 18, “Servlets and JSP”.

Darwin, 2004 TheJava Cookbook, Second Edition, 2004. JDO is discussed in
Chapter 20, “Databases”.

Darwin, 2004a “Keeping Up with the Java Joneses”, article on O’Reilly.net at
http://www.onjava.com/pub/a/onjava/2004/07/28/javackbk2.html
discusses a variety of “current” technologies including Hibernate.

DataMonitor, 2003 The Register.UK, available online at http://www.theregister.co.uk/
content/53/31021.html, posted June 4, 2003.

Dudney, 2004 Bill Dudney, Creating JSF Components, July 2004, online at http://
today.java.net/pub/a/today/2004/07/16/jsfcustom.html.

Elrad, 2001 Tzilla Elrad, Robert E. Filman, and Atef Bader, “Aspect-oriented
programming: Introduction”, in Communications of the ACM, Vol-
ume 44 , Issue 10 (October 2001), pp 29 - 32. ACM Press New
York, NY, USA

FOLDOC, 1995 Free Online Dictionary of Computing, Imperial College, Depart-
ment of Computing. The definition for Framework is online at http:/
/foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?query=frame-
work&action=Search

Fowler, 2004 Martin Fowler, Inversion of Control Containers and the Depen-
dency Injection pattern, revised January 2004, online at http://
www.martinfowler.com/articles/injection.html.

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 57

GOF, 1995 Gamma, Helm, Johnson and Vlissides (widely referred to as the
“Gang of Four”), Addison-Wesley, January, 1995.

Hiltzik, 2000 Dealers of Lightning: XEROX PARC and the Dawn of the Com-
puter Age, HarperCollins, ISBN 0887309895. This overview of
early work at the XEROX Palo Alto Research Center and how so
many of the OO and GUI ideas we use today originated with a
small band of researchers puts us in mind of Churchill’s famous
remark about the Battle of Britain.

Husted, 2002 A large collection of Java-centric Web links; start at http://
www.husted.com/struts/links.html#mvc (viewed June, 2003)

Husted, 2003 “Is Struts Performant?” article reasoning that Struts will gain in
performance over non-MVC solutions because of Java API details
such as the way Servlets run multi-threaded. Online at http://
husted.com/struts/resources/performant.htm (as of June, 2003).

ISO8879:1986 Information processing -- Text and office systems -- Standard Gen-
eralized Markup Language (SGML) , International Organization for
Standardization (http://www.iso.org). Standards document available
for purchase in hardcopy or electronically.

Johnson, 1988 Ralph E. Johnson and B. Foote. Designing reusable classes. J.
Object-Oriented Programming, 1(5):22--35, June/July 1988.

JUnit, 2001 JUnit, from http://www.junit.org, is a widely-used “unit testing”
facility for Java applications.

Leff, 2001 “Web-application development using the Model/View/Controller
design pattern”, Leff, A. and Rayfield, J.T. of IBM Thomas J. Wat-
son Research Center, Hawthorne, NY. Appears in: Enterprise Dis-
tributed Object Computing Conference, 2001. EDOC '01,
Proceedings Fifth IEEE International Conference, 09/04/2001 -09/
07/2001, 2001, Seattle, WA, USA. pages 118-127

McClanahan, 1999 Struts Framework, discussed in online video presentation at http://
www.theserverside.com/events/videos/CraigMcClanahan/dsl/inter-
view.html (MS-Windows Media Format)

MIT-XT, 1988 An overview of the X toolkit, Joel McCormack and Paul Asente in
Proc 1st annual ACM SIGGRAPH symposium on User Interface
Software, Alberta, Canada, Pages: 46 - 55,1988. ISBN:0-89791-
283-7

Moore 2002 Geoffrey Moore, Crossing the Chasm (HarperBusiness; Revised
edition, August, 2002, ISBN 0060517123)

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 58

NCSA 1995 The CGI specification, online at http://hoohoo.ncsa.uiuc.edu/cgi/
intro.html with a last-modified date in 1995.

OMG CORBA information is at http://www.omg.org/gettingstarted/spe-
cintro.htm#CORBA.

RFC793 Transmission Control Protocol (TCP), online at http://www.ietf.org/
rfc/rfc0793l.txt

RFC768 User Datagram protocol (UDP), online at http://www.ietf.org/rfc/
rfc0768.txt.

RFC2616 HyperText Transport Protocol (HTTP), Tim Berners-Lee, CERN

Seshadri, 1999 Govind Seshadri, Understanding JavaServer Pages Model 2 archi-
tecture: Exploring the MVC design pattern, December, 1999 - an
early explanation of MVC as it applies to Java Web frameworks.

Sun, 1995 The Java Tutorial, Threads chapter, online at http://java.sun.com/
docs/books/tutorial/essential/threads/. Provides a straightforward
introduction to the notion of threaded code in the Java environment.

Sun, 2004 Sun’s The J2EE Tutorial 1.4, June 17,2004, online at http://
java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html.

Turau, 2002 Volker Turau, A framework for automatic generation of web-based
data entry applications based on XML, in Proceedings of the 2002
ACM symposium on Applied computing, 2002 , Madrid, Spain.
ISBN 1-58113-445-2.

Uden, 2002 IJWET, the International Journal of Web Engineering and Technol-
ogy. Dr. Lorna Uden of Staffordshire is Editor. Information at http:/
/www.inderscience.com/catalogue/w/ijwet/indexijwet.html

uidesign.net, 1999 An early paper on MVC, first published in October, 1999. Author’s
name not given. Online at http://www.uidesign.net/1999/papers/
webmvc_part1.html as of June, 2003.

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 59

 Alphabetical List of Known Frameworks

This table lists all the frameworks I have come across and, for those that are discussed ref-
erences to the sections in which they are discussed.,

TABLE 4.

Framework
name Framework URL or Reference Reference

ActionServ-
let

http://www.actionframework.org/ 3.3.1, p. 23

BEA Page
Flows

http://dev2dev.bea.com/products/wlworkshop81/techni-
calguides/pgflow_portability.jsp

Barracuda http://www.barracudamvc.org/Barracuda/index.html

Bento http://www.bentodev.org/

Bishop http://bishop.sourceforge.net/

Cocoon http://cocoon.apache.org/

DBforms http://jdbforms.sourceforge.net/ 3.5.2, p. 29; 4.5, p. 40

Echo http://www.nextapp.com/products/echo/

Expresso http://www.jcorporate.com/html/products/expresso.html 3.6.2, p. 30

fwap Leff, 2001

Freemarker http://freemarker.sourceforge.net/ 3.2.2, p. 21

Groovy http://groovy.codehaus.org/

JOIST http://joist.tigris.org/

JOT http://www.jotobjects.com/

JPublish http://www.jpublish.org/

JStateMa-
chine

http://www.jstatemachine.org/products.html

JWIG http://www.brics.dk/JWIG/

Japple http://www.japple.org/

JavaServer
Faces

http://java.sun.com/j2ee/javaserverfaces/ 3.7.2, p. 34; 4.8, p. 46

Keel http://www.keelframework.org/ 3.8.1, p. 37

Kona http://www.aki.com/kona/

M7 http://www.m7.com 3.6.3, p. 31

Maverick http://mav.sourceforge.net/

Melati http://www.melati.org/

Millstone http://millstone.org/

Niggle http://www.niggle.org/ 3.5.1, p. 28; 4.4, p. 39

OpenSym-
phony

http://www.opensymphony.com/

Portlet API http://jcp.org/aboutJava/communityprocess/review/
jsr168/index.html

Java Web MVC Frameworks: Background, Taxonomy, and Examples Sep 17, 2004 60

Ruby Web
Framework

http://ruby-waf.sourceforge.net/

SOFIA http://www.salmonllc.com/sofia/ 3.7.1, p. 33; 4.6, p. 40

Spring http://www.springframework.org/ 3.8.2, p. 37

SWAF http://www.sysoft.com/swaf

Struts http://jakarta.apache.org/struts/ 3.4.2, p. 24; 4.7, p. 44

Tapestry http://sourceforge.net/projects/tapestry/

Tea Servlet http://teatrove.sourceforge.net/ 3.4.1, p. 23

Theseus http://www.brainopolis.com/theseus/

Thin Client
Framework

http://alphaworks.ibm.com/tech/tcf

Tiles http://jakarta.apache.org/struts/ 3.4.2, p. 24

Turbine http://jakarta.apache.org/turbine/ 3.6.1, p. 29

Velocity http://jakarta.apache.org/velocity/ 3.2.3, p. 22

WakeSoft http://www.wakesoft.com/

WebMacro http://www.webmacro.org/ 3.2.1, p. 21

Weaver http://www.oldlight.com/weaver/ 3.3.2, p. 23

WebWork http://www.opensymphony.org/webwork

wings http://wings.mercatis.de/tiki-index.php

wizard Turau, 2002

TABLE 4.

Framework
name Framework URL or Reference Reference

